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Supervisors’ Foreword

The study of cellular metabolism has been dominated by a reductionist approach
focusing on the analysis of single reactions or specific biochemical pathways.
However, metabolism is a complex system of molecular interactions and displays
emergent properties and unexpected behaviours that cannot be predicted by
assuming the underlying principles of molecular biology.

When searching for an explanation of the processes and responses observed in
cellular metabolism, one can use a systems approach. In practical terms, this implies
the consideration of genome-scale metabolic reconstructions, with thousands of
metabolites and reactions which can be represented as complex networks. Network
science in conjunction with systems biology offers then the tools for the endeavour
of studying the intricate properties and functions of metabolic networks.

The doctoral thesis by Oriol Güell summarizes a series of studies of the cellular
metabolism from a complex network and systems biology perspective. The first part
of this book is devoted to the study of the robustness of metabolic networks. At the
level of structure, failures of single and pairs of reactions are simulated to char-
acterize the propagation of damage cascades. In addition, analysis of metabolic
fluxes at steady state using the Flux Balance Analysis (FBA) technique is employed
to extend the investigation of robustness from structure to phenotype. This brings in
the concept of synthetic lethality, reviewed in relation to two of its different real-
izations: plasticity and redundancy. Taken together, the results indicate that
essential backup mechanisms of different nature ensure the robustness to failures in
metabolic networks.

The second part addresses two more issues. The first one is based on identifying
metabolic backbones, which are the most important connections between metabo-
lites constituting the metabolism. This analysis permits to detect evolutionary trends
and adaptation fingerprints in metabolic networks. Finally, FBA solutions are
contextualized in relation to the feasible flux space of phenotypes compliant with
environmental constraints. Among all possible metabolic fluxes solutions, the FBA
one is eccentric, meaning that high-growth phenotypes are metabolic states of low
probability.
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The importance of the results presented in this doctoral thesis goes beyond
theoretical implications. The results reported here have potential applicability in
biomedicine, for example to study the metabolism of diseased cells, and in
biotechnological studies, such as the activation of specific metabolic reactions
which will lead to the maximal production of a desired metabolite, like bio-based
polymers.
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Chapter 1
Cellular Metabolism at the Systems Level

This chapter reviews basic concepts of cellularmetabolism. First, an overall viewof the archi-
tecture of cellular metabolism is given, from the large-scale of Catabolism and Anabolism
to biochemical pathways, reactions, and metabolites. Fundamental concepts of chemical
kinetics and thermodynamics are mentioned, followed by a brief consideration of key ideas
about regulation, control, and evolution of metabolism. Finally, the need for a systems-
level approach is discussed. Aims and objectives, together with an outline of this thesis, are
included at the end of the chapter.

Cellular metabolism is composed of enzyme-controlled biochemical reactions. They
form a densely-connected metabolic network which is responsible of maintaining
cells alive by generating chemical energy and by synthesizing important metabolic
intermediates from nutrients taken from the environment. Over the years, cellular
metabolism has attracted the attention of many researchers. At the end of the nine-
teenth century, the viewofmetabolismwas dominated by studies of specific biochem-
ical reactions or processes. It is worth mentioning in this respect the work of Eduard
Buchner who, based on previous work by Louis Pasteur, demonstrated that cell-free
biochemical extracts of yeast—known today as enzymes—could catalyse alcoholic
fermentation. This put an end to vitalism-based ideas and boosted the then emerging
field of biochemistry [1]. Later on, with the help of experimental techniques such as
NMR spectroscopy add X-ray diffraction, the idea of the organization of reactions
into sequences of consecutive transformations or pathways arose, creating the basis
of modern biochemistry [2]. In principle, pathways were treated as entities with a
definite function which operated independently of each other. Despite the enormous
success achieved by biochemistry, studies focusing on single reactions, enzymes,
or even single pathways are not sufficient to explain most experimental results on
metabolism at the functional level, which require a high knowledge of the entire
map of metabolic interactions and their interplay with other cellular components.
Examples of these results are the identification of redundant metabolic pathways [3],
or the observation of the effect known as synthetic lethality [4], which arises when
a combination of mutations leads to cell death, whereas the individual mutations are
not lethal.

© Springer International Publishing AG 2017
O. Güell, A Network-Based Approach to Cell Metabolism, Springer Theses,
DOI 10.1007/978-3-319-64000-6_1
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2 1 Cellular Metabolism at the Systems Level

Sincemetabolic phenotypes1 and behaviour emerge from the interactions ofmany
metabolic reactions and other cell components, understanding them at the systems
level is crucial for our understanding of living cells. Metabolism is not isolated from
the rest of the cell machinery. Therefore, a key challenge in biology is to integrate all
the knowledge about the constituents of cells, from genes, to proteins, to metabolites,
and reactions, in order to understand how they interact and how these interactions
determine the behaviour of cells [5]. This implies a wide knowledge on how reactions
are interconnected with metabolites to integrate a whole metabolic network. One
can use this metabolic map to study, for example, how different pathways interact
[6, 7].A clear understanding of all thesemetabolic interactions, and their linkages and
interdependencies with other biological scales like genetic networks, will allow us to
decipher crucial questions, such as how cells are able to adapt to their environment,
or in which way evolutionary processes led to the properties of metabolism as we
currently observe them.

The study of integrated metabolic maps is difficult due to the inherent complexity
of these intricate systems composed of thousands of interacting reactions. To ease the
understanding of cellular metabolism as a complex system, the classical reduction-
ist approach has given way to the so-called systems-level approach, which studies
metabolism as a whole, taking into account the largest number of experimentally
known constituents of the metabolic network, their interactions, and the linkages to
other cell constituents such as enzymes, proteins, and genes. This emerging para-
digm for the study of cell metabolism is at the core of an emerging interdisciplinary
field called Systems Biology [8–11], which uses a holistic approach to understand
the relationships between structure and function in biological systems, an impos-
sible endeavour for studies that focus on specific reactions, enzymes, or metabolic
processes. The use of this approach has provided a large amount of new validated
hypotheses, like the heterogeneity of physiological metabolic fluxes in cells [12], or
the phylogenetic analysis of metabolic environments that determine which compo-
nents must be exogenously acquired [13]. Along with the development of Complex
Network Science [14, 15], the systems-level approach has led to a huge increase in
our understanding of how metabolic networks operate.

1.1 A Brief Introduction to Cellular Metabolism

Cellularmetabolism comprises the complete set of chemical reactions at the cell level
needed for life. While chemical syntheses in laboratory focus on specific sequences
of chemical reactions in order to optimize processes, thousands of reactions, tightly
interconnected through common metabolites, take place simultaneously in cells,
forming a network that is precisely controlled by the combined action of enzymes,
genes, etc., in order to secure functions. This network takes part in the growth of

1A phenotype is the composite of the observable characteristics of an organism, such as its mor-
phology, development, biochemical or physiological properties.



1.1 A Brief Introduction to Cellular Metabolism 3

cells, in the maintenance and construction of their structures, and in the response and
adaptation of the cell to different environmental conditions or internal changes [16].

Cellular metabolism is divided in two big blocks. The first is called Catabolism,
whose processes are related with the degradation of nutrients and intermediate sub-
strates to provide energy and basic building blocks coming from the rupture of chem-
ical bonds of nutrients. The second is referred to as Anabolism, whose processes are
related fundamentally to the synthesis of complex organic molecules. Notice that
Catabolism supplies Anabolism with the necessary energy and basic compounds
or elements to synthesize new molecules. At a different scale, biochemical reac-
tions have been classically classified into different biochemical pathways, which are
sequences of consecutive reactions that transform certain metabolites into specific
products. Pathways are traditionally associated with definite functions, like Glycol-
ysis which breaks down glucose into other small compounds to extract chemical
energy and basic building blocks for anabolic reactions in the synthesis of fatty
acids or amino acids. Currently, we know that pathways are not isolated entities and,
instead, they constantly interact with each other [6, 7].

Focusing on individual reactions, one must notice that they require the action of
catalysts-called enzymes- to take place. Enzymes are a special class of proteins. Pro-
teins are macromolecules composed of amino acids, which perform a large number
of functions in living cells, participating for example in the responses to stimuli, the
replication of DNA, and transportation of molecules. It is worth stressing that, even
though biochemical reactions may be thermodynamically spontaneous, they would
not take place without enzymes because the activation energy required inside cells
is very large. To ensure that all reactions occur, enzymes decrease the necessary
activation energy by generating feasible chemical mechanisms that allow these reac-
tions to take place in a controlled way and in reasonable amounts of time [17]. The
action of enzymes helps also to control reaction fluxes, i.e., the rates of biochemical
reactions. Not all reactions in metabolism proceed with the same speed or are always
on. Biochemical fluxes present a broad distribution of values [18] that reconfigure
in response to internal or external changes and signals.

1.1.1 Key Compounds

Biochemical reactions are connected by their participating chemical species, the
products of one reaction are the substrates of subsequent reactions, and so on.
These compounds-metabolites-participate inmany different cell functions, including
catalytic activity of their own. Five different general categories of metabolites are
described in the following paragraphs (see Fig. 1.1).

• Amino acids [19, 20] are compounds composed by amines (–NR2), carboxylic
groups (–COOH), and a different side chain for each amino acid. The polymeriza-
tion of different amino acids generates short chains called peptides, or long chains
called polypeptides that can be arranged in one or more biological functional way
to form proteins.
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Amino acid
(Alanine)

Lipid
(Oleic acid)

OH

O

Carbohydrate
(β-glucose)

K+

Na+

Fe3+

Cl-

Inorganic
elementsCoenzyme

(ATP)

Fig. 1.1 Examples of classes of compounds that can be found in the metabolism of cells

• Lipids are amphiphilic molecules, like fats or sterols, that contain both a polar
and an apolar part. This implies that they can be in contact with water (polar part),
whereas at the same time are soluble in substances like oil through its hydrophobic
part. The main uses of lipids are to store energy [21], signaling [22], and being
constituents of membranes [23].

• Carbohydrates are large biological molecules consisting of carbon (C), hydrogen
(H), and oxygen (O) arranged on a carbon backbone possibly containing in addition
aldehydes (–CHO), ketones (–CO–) and hydroxyl (–OH) groups. They fulfillmany
roles like energy source [24], storage of energy in the form of glycogen [25], or
structural functions.

• Nucleotides are organic molecules containing a nitrogenated base (an aromatic
compound containing a basic2 nitrogen), a ribose or deoxyribose sugar, and a
phosphate group (–PO3−

4 ). They are building blocks of the two nucleic acids DNA
and RNA [26]. Genes are fragments of DNA that contain the hereditary informa-
tion in order to code for polypeptides or for RNA chains. At the same time, RNA
performsmultiple vital roles in the coding, decoding, regulation, and expression of
genes. Nucleotides are obtained from the phosphorylation of nucleosides, and in
the form of nucleoside triphosphates, nucleotides play central roles in metabolism
[27]. One of these roles is to act as coenzymes, which are important metabolic
intermediates that bond loosely to enzymes so as they can perform their catalytic
activity. For instance, coenzymes serve to carry energy within the cell. An impor-
tant coenzyme is adenosine triphosphate (ATP). It is one of the energy currencies
of the cell [28]. Many reactions depend on ATP to become thermodynamically
spontaneous, taking advantage of the large content of free energy that is released
when the high-energy oxygen-phosphate bond of ATP is broken. Another example

2In this context, basic refers to acid-base behavior.
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of the importance of nucleotides as coenzymes is nicotine adenine dinucleotide
NAD+, a derivative of vitamin B3, along with its reduced form nicotine adenine
dinucleotide-hydrogen (NADH), which are in charge of balancing the quantity of
reduced / oxidized species inside the cell [29, 30].

• Inorganic compounds like water (H2O), or ionic species like potassium (K+),
sodium (K+), chlorine (Cl−), calcium (Ca2+), etc., are simple but not less important
components of metabolism. Some of them are abundant, like sodium or potassium,
whereas others are present at very low concentrations (traces) [31]. They appear
in the form of electrolytes, and thus their concentrations play a key role for exam-
ple in fixing the osmotic pressure, pH, or the cell membrane potential [32, 33].
Some transition heavy metals like iron (Fe2+/Fe3+) or zinc (Zn2+) are cofactors,
compounds which are essential for the activity of proteins like haemoglobin [34].

1.1.2 Biochemical Reactions

Metabolites are the substrates or products of biochemical reactions in the cell. These
can be classified in different categories. An important kind of metabolic reactions is
a redox process, which involve the transfer of electrons from reduced species, like
ammonia or hydrogen sulphide, to oxidized ones, like oxygen or nitrates. Redox
reactions play fundamental roles in respiration, where glucose reacts with oxygen,
the final products being carbon dioxide coming from the oxidation of glucose, and
water, obtained by reduction of oxygen, along with a large quantity of free energy,
which is mainly used for non-spontaneous anabolic processes.

Another type of reactions in metabolism involves the transference of entire chem-
ical groups, like a phosphate group in a phosphorylation reaction. Other reactions
involve the direct breakage of chemical bonds, like the rupture of carbon-carbon
bonds in the decarboxylation of pyruvate. This is a principal process in fermenta-
tion which, in order to obtain energy and avoid pyruvate accumulation, transforms a
carboxylic group in the form of carbon dioxide, generating acetaldehyde that finally
gets reduced into ethanol by a redox reaction [35]. Decarboxylations are also impor-
tant, for example, in the intermediate step between Glycolysis and the Citric Acid
Cycle3 to obtain acetyl-CoA, or in subsequent steps of this last pathway to gener-
ate new intermediates. Transport reactions deserve special attention, since they are
responsible for the entrance of nutrients and the excretion of waste products.

An important feature of biochemical reactions is reversibility. Depending on the
value of �Go,4 reactions can be considered as reversible or irreversible [36]. More
precisely, for �Go ≈ 0 reactions can be considered reversible, meaning that both
directions of the reaction are thermodynamically favoured; generically one would

3Also called Krebs Cycle or Tricarboxylic Acid Cycle (TCA Cycle).
4Thermodynamically speaking one should refer to �G, the change in Gibbs free energy (SI units
J mol−1). An approximate but convenient way is however to refer to �Go, which denotes the free
energy change in standard conditions of a reaction.
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write aA+bB � cC +dD. On the contrary, if�Go < 0 and significantly negative,
reactions are considered irreversible, and one direction is favoured aA + bB →
cC + dD. For �Go > 0, the reaction takes place mostly in the opposite direction
aA + bB ← cC + dD.

1.1.3 Biochemical Pathways

Traditionally, sequences of consecutive biochemical reactions that transform a prin-
cipal chemical into specific products are called pathways. In cell metabolism, there
are several universal pathways that when interconnected form a complex metabolic
network. Next, the central pathways of metabolism are briefly reviewed.

Glycolysis is the pathway that degrades carbohydrates. It takes place in the cytosol,
and its main fuel is glucose. Basically, Glycolysis contains enzyme-catalysed chem-
ical reactions which transform glucose into pyruvate. In its more common form, this
process generates the necessary free energy in order to form two molecules of ATP
along with NADH. Glycolysis contains two phases, the first one where energy must
be invested, which costs two ATP molecules but that generates important intermedi-
ate compounds. On the contrary, the second phase produces energy, since four ATP
molecules are generated, along with two pyruvate molecules and two NADH mole-
cules. Therefore, Glycolysis is important not only to obtain energy but to generate
important biosynthetic precursors [16]. Notice that the inverse process, which gener-
ates glucose from pyruvate is calledGluconeogenesis and corresponds toAnabolism.

Pyruvate obtained from Glycolysis can be metabolised in two different ways. The
first way corresponds to anaerobic processes, when no oxygen is available. This is
called fermentation, and consists in reducing pyruvate into several components like
ethanol, lactate or acetate by oxidizing NADH into NAD+. Fermentation generates
two ATP molecules [16].

In case that oxygen is present, the main fate of pyruvate is to become acetyl-CoA,
a chemically activated compound formed by a cofactor, called coenzyme A, and
an acetyl group. Acetyl-CoA enters the Citric Acid Cycle, a route that takes simple
carbon compounds and transforms them intoCO2 in order to obtain energy. TheCitric
Acid Cycle not only accepts acetyl-CoA from Glycolysis, but also from other routes
like lipid or protein metabolism, which emphasizes the importance and centrality of
this pathway (see Fig. 1.2) [16]. In eukaryotic cells, the Citric Acid Cycle occurs in
the matrix of mitochondria, whereas in prokaryotic cells it takes place in the cytosol,
like Glycolysis. The Citric Acid Cycle generates CO2, guanosine-5′-triphosphate
(GTP), NADH, and flavin adenine dinucleotide in hydroquinone form (FADH2).
GTP is transformed directly into ATP. NADH and FADH2 are two reduced species
that, by being oxidized, generate also ATP. This oxidation takes place in the process
called Oxidative Phosphorylation.

Organisms take advantage of the processes in the electron respiratory chain called
Oxidative Phosphorylation in order to oxidize the reduced species coming from the
Citric Acid Cycle to generate energy. In eukaryotic cells, Oxidative Phosphorylation
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takes place inside mitochondria. In prokaryotic organisms, where no mitochondria
are present, it takes place across the prokaryotic cell membrane. To summarize,
by coupling Glycolysis to the Citric Acid Cycle and Oxidative Phosphorylation,
organisms are be able to generate up to 38 ATP molecules [16], which compared to
two ATP molecules generated by fermentation, represents a great advantage in order
to obtain ATP, whenever oxygen is present.

Other important pathways in cell metabolism comprise the degradation of fatty
acids inside mitochondria, a process called β-oxidation, which is another source
of acetyl-CoA apart from Glycolysis. Another source of acetyl-CoA comes from
the degradation of amino acids, which can be synthesized by transamination [16].
Basically, transamination transforms α-ketoacids coming from the Citric Acid Cycle
to generate amino acids, which emphasizes again the centrality of the Citric Acid
Cycle.

There are two main routes for the synthesis of purines and pyrimidines, the build-
ing blocks of nucleic acids or coenzymes like NAD+: the de novo, which refers to
the synthesis from simple molecules, and the salvage pathways, where purines and
pyrimidines are recycled from intermediates coming from the routes that degrade
nucleotides. The de novo route of nucleotide synthesis has a high energetic require-
ment as compared to the salvage pathway. The enzymes that synthesize purines and
pyrimidines perform basic, cellular activities and it is thought that are present in low,
constitutive levels in all cells [37].

1.1.4 Classical Studies of Metabolism

Traditionally,metabolismhasbeen studiedusing abiochemical reductionist approach
focused mainly on the study of the role of biomolecules and the kinetics and on the
thermodynamics of particular metabolic reactions. As an example, processes like
the non-spontaneous transport across the membrane -which takes advantage of the
free energy coming from a proton gradient [38] or from ATP hydrolysis- have been
studied using irreversible thermodynamics. Classical questions in biochemistry that
prompt new systems-level studies refer to regulation and control of metabolism, the
interplay and adaptation to the environment, and the effects of evolutionary pressure.

1.1.4.1 Kinetics and Thermodynamics

Classic metabolic studies have usually focused on the kinetics of reactions. The
traditional approach was to discover the chemical mechanism by which reactions
take place. In this way, kinetic constants were measured for specific reactions using
in vitro experimental techniques in order to obtain a velocity law.

As mentioned before, the action of enzymes decreases the necessary activation
energy of a reaction, so that the reaction rate increases (otherwise it would take place
more slowly or even it would take place so slowly that any progression of the reaction
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would be unnoticeable). A scheme of this decrease in the energy barrier is shown
in Fig. 1.3. The best-known kinetic enzymatic mechanism in biochemistry is the
famous Michaelis-Menten kinetics [39]. In fact, biochemical reactions involving a
single substrate are often assumed to followMichaelis–Menten kinetics. This model
assumes that the minimal equation to describe a simple reaction with one reactant S
and one product P catalysed by one enzyme E is

S + E
k1�
k−1

ES
k2→ P + E (1.1)

where k1, k−1, and k2 are rate constants. The model relates the overall reaction rate
v to the concentration of substrate [S] and the concentration of enzyme [E] under
assumptions like steady-state conditions and low enzyme concentration. The rate
v is given by the expression v = vmax

[S]
Km+[S] , where vmax = k2[E] and Km is the

substrate concentration at which the reaction rate is at half-maximum. Michaelis–
Menten kinetics reaches a saturation of the velocity as a function of the substrate
concentration due to the limited availability of enzyme that can bind to the substrate.

Apart from Michaelis-Menten kinetics, other mechanisms were described for
reactions involving more than one substrate or even for reactions with one substrate
that do not follow theMichaelis-Menten mechanism. One of these examples is coop-
eration, which happens when the binding of one substrate molecule to the enzyme
affects the binding of subsequent substrate molecules. This effect is modelled by
the Hill equation [40], which has the form θ = [L]n

K n
a +[L]n , where θ is the fraction of

occupied sites and the Hill coefficient n measures howmuch the binding of substrate
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to one active site affects the binding of substrate to the other active sites. The case
n < 1 indicates that once one substrate molecule is bound to the enzyme, its affin-
ity for other substrate molecules decreases, whereas n > 1 indicates that once one
substrate molecule is bound to the enzyme, its affinity for other substrate molecules
increases. The case n = 1 indicates that the binding of one substrate does not affect
the binding of other ligands. The other parameters [L] and Ka are, respectively, the
free unbound substrate concentration and the apparent dissociation constant derived
from the law of mass action.

Other kinetic mechanisms, involving multi-substrate reactions, are the so-called
ternary-complex mechanisms and ping–pong mechanisms [16]. These mechanisms
describe the kinetics of an enzyme that takes two substrates, namely A and B, and
turns them into two products, namely P and Q. Ternary-complex mechanisms imply
that the substrates bind to the enzyme forming a ternary complex, where the reaction
takes place. After this transformation, the complex dissociates, giving products P
and Q. Ping–pong mechanisms consist on sequences of enzyme transformations due
to interactions with the substrates. First, the enzyme binds to one substrate and one
product is formed. After this process, the second substrate binds to the enzyme giving
the second product.

Specific applications of thermodynamics to cell metabolism can be found for
example in the description of transport of molecules across the cell membrane. On
the one side, passive transport implies a movement of compounds which involves no
energy supply, happening spontaneously. On the other side, active transport accounts
for the movement of compounds across the cell membrane in the direction against
a concentration gradient. Active transport is usually associated to the accumulation
of high concentrations of molecules that the cell needs, such as ions, glucose and
amino acids. If this process uses chemical energy in the form of ATP, it is termed
as primary active transport. Secondary active transport involves the use of an elec-
trochemical gradient. Examples of active transport include uptake of glucose in the
human intestines [41].

Kinetics describes the rates of reactions and how fast equilibrium is reached, but
it gives no information about conditions once the reaction reaches equilibrium. At
the systems level, several aspects must be taken into consideration in relation to its
second law. In simple terms, the second law of thermodynamics states that in a closed
system entropy tends to increase. An increase in the entropy of a system implies an
increase of the number of its possible reachable states. However, organisms seem to
contradict this law, since biological systems are complex but ordered structures. To
obey the second law and, at the same time, to generate these structures, organisms
must exchange matter and energy with their surroundings (see Fig. 1.4). In this way,
organisms are not in thermodynamic equilibrium, but they are dissipative systems
which, to maintain their high degree of complexity and order, increase the entropy of
their surroundings whereas their internal entropy is decreased. Thus, the necessary
free energy required by Anabolism to generate complex molecules is obtained by
coupling it to Catabolism. For example, nutrients are metabolised and small mole-
cules like CO2, whose entropy is much larger than that of nutrients [42, 43], are
expelled as waste.
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Another thermodynamic discussion concerns energybalance.The intake of energy
is equal to the sum of the energy expended in the form of heat or work, and the stored
energy. Energy balance states that no energy can be created or destroyed, but it can
be transformed. This is indeed the first law of thermodynamics. For example, when a
cell consumes nutrients, a part of the energy content of the nutrients will be diverted
towards the storage as fat, or transferred inside the cell as chemical energy in the
form of ATP, or immediately dissipated as heat.

1.1.4.2 Regulation and Control

The environment of organisms is constantly changing. In fact, organisms themselves
modify their own surroundings by consuming nutrients and expelling waste. There-
fore, organisms must be regulated in order to avoid large imbalances within them-
selves. Furthermore, possible internal perturbations can also lead to imbalances inside
an organism. Hence, organisms have developed different regulation strategies to be
able to maintain homeostatic states in which internal conditions remain stable [44].
Regulation requires that a system operates near steady-state conditions, whichmeans
that the temporal variation of the properties through time is practically null, except for
adjustments to internal or external perturbations. This implies that concentrations of
internal metabolites are maintained steady in front of variations in metabolic fluxes.
This entails the regulation of enzymes by increasing or decreasing their response to
signals.

A real example of homeostatic readjustment is the regulation of glucose concen-
tration by insulin [45, 46]. When large levels of glucose are present in the blood,
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insulin binds to its receptors, which generates a cascade of protein kinases5 that cause
the consumption of glucose into fatty acids or glycogen. Therefore, the increase in the
concentration of glucose is regulated by the control of fluxes of catabolic biochemical
reactions, so as to decrease the concentration of glucose until a stable steady-state is
reached.

Control has been differentiated from regulation. Metabolic control refers to the
ability to change a metabolic state as a response to an external signal [47]. In this
way, control can be assessed in terms of the intensity of the response to the external
factor without the need of knowing how the organism is able to achieve internally
this state. This implies that control is simpler than regulation, because no judgement
about the function of the system is needed. For example, an enzyme may show large
changes in activity due to some external signal, but these changes may have little
effect on the overall flux of a certain set of reactions or pathway. Therefore, this
enzyme is not involved in its control.

1.1.4.3 Evolution

Through the process of descend with modifications, organisms evolve and change in
timeunder the driving force of survival. In cellmetabolism, there are central pathways
that have been conserved through evolution and that are present in practically all kinds
of organisms. In fact, these pathways were in the so-called last universal ancestor,
which is the most recent organism from which all organisms that now live on Earth
descend [48]. Pathways like Glycolysis and the Citric Acid Cycle have been retained
probably due to their optimality when producing their products and intermediates
in a relatively small number of steps, which then can act as precursors for other
biochemical routes. Many studies support the theory that organisms have evolved
towards the maximization of the growth rate, i.e., organisms tend to reproduce as
much as possible [49, 50].

There have been proposals in recent years in order to understand howmetabolism
might have evolved including the retention of ancestral pathways. Different mech-
anisms have been proposed for the evolution of metabolic pathways, for instance
(1) sequential addition of old or new enzymes within short ancestral pathways, (2)
duplication and then divergence of pathways, and (3) recruitment of enzymes that are
already present to be assembled into a novel pathway [51]. Horizontal gene transfer is
another way that organisms use to evolve, consisting on the transfer of genes between
organisms. In fact, bacteria acquire resistance to antibiotics due to horizontal gene
transfer [52]. This process implies modifications in the metabolic network, in the
form of alterations of pathways, to generate by-passes in order to avoid the effect of
the antibiotic.

5A protein kinase is a kind of enzymewhich transfers phosphate groups fromhigh-energy phosphate
donor molecules to specific substrates. This process is called phosphorylation, not to be confused
with the Oxidative Phosphorylation pathway described in Sect. 1.1.3.
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Heritable epigenetic effects have also impact on evolution. Epigenetics studies the
changes in gene expression that cannot be explained by changes in DNA sequences.
There are two ways in which epigenetic inheritance may be different from tradi-
tional genetic inheritance. The first way corresponds to the situation where the rates
of epimutation are much faster than the rates of mutation [53]. Alternatively, epimu-
tations are more easily reversible [54]. The existence of these possibilities implies
that epigenetics, and thus metabolic effects, can increase the evolvability of species.

Evolution can cause not only the gain of newmetabolic functions but also the loss
of functions which are not useful anymore for cells.Mycoplasmas, a kind of bacteria
without cellular wall that act as parasites, have lost those processes and pathways
that are essential for survival as independent entities, since these microorganisms
obtain compounds from their hosts [55, 56].

1.2 Genome-Scale Models

A systems-level approach to the study of cell metabolism takes into account the entire
set of biochemical reactions and their interactions at different levels of organization.
At the core of this approach, genome-scale metabolic networks [10] provide high
quality representations of cell metabolism which integrate biochemical information
with genome annotations, physiological requirements, and constraint-based mod-
elling refinements. These genome-scale models, after experimental validation, have
predictive capacity and can be used for detailed analysis of metabolic capabilities,
with applications in a range of fields like biomedicine or biotechnology [57, 58].

1.2.1 Reconstructing Metabolism

Nowadays, genome-scale metabolic models have been reconstructed and experi-
mentally validated for different organisms like Escherichia coli, Saccharomyces
cerevisiae,Mycoplasmapneumoniae, andHomosapiens, amongothers. These recon-
structions are calledGENome-scale metabolic REconstructions (GENREs) (see Fig.
1.5) [10]. InGENREs, reactions are typically stoichiometrically balanced and catego-
rized into their corresponding pathway, for example, reactions belonging to Glycol-
ysis, Oxidative Phosphorylation, or Citric Acid Cycle. Reactions are also associated
to their corresponding enzyme and metabolic gene.

Generating these representations is a difficult task and several steps are needed in
the protocol [60]. First, an initial reconstruction is proposed from gene-annotation
data coupled with biochemical information from databases like the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [61], or BioCyc [62], among others. In
these databases, reactions are linked with metabolic genes, enzymes, and also to
functional categories like pathways. Second, the obtained reconstruction is curated
by checking it against experimental evidence in the existing literature, including for
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Fig. 1.5 Simplified representation of a genome-scale model. Reactions are catalysed by enzymes,
whereas enzymes are codified by genes. Reactions are represented by blue squares, metabolites by
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form a complex and the latter is the catalyst of reaction j. (color figure online)

instance physiological requirements. This revised reconstruction is further translated
into a computational mathematical model using constraint-based approaches. Third,
the reconstruction is validated by comparing the results obtained by the model with
experimental evidence. After curation of inconsistencies, models are, see for instance
the BiGG database [63]. Finally, one has to remember that GENREs are constantly
improved in new versions as new experimental results become available.

Among all metabolic network simulation techniques for model refinement, Flux
Balance Analysis (FBA) [64] is probably the most widespread. Very briefly, FBA
uses constraint-based analysis to compute a metabolic phenotype, in the form of
the set of fluxes of reactions, which maximizes biomass production given a set of
external bounds typically referring to nutrient amounts.

Since the first GENRE reconstructed a decade ago [65], there has been a huge
expansion on the construction and use of GENREs [66–70]. Their applications can
be divided into four categories [57, 71, 72].

• Many advances in Biology are the result of hypothesis-driven discoveries.
Metabolic GENREs enable the identification and confirmation of new or exist-
ing hypotheses, representing an important framework for the incorporation of cell
biological data. The key to unlock the potential of GENREs for the discovery
of unknown metabolic mechanisms is to ask feasible questions and to know the



1.2 Genome-Scale Models 15

limitations of the used methodology, since one must always have in mind that
in real living cells, many biological levels act together (metabolism, regulation,
signaling, gene regulation, etc.) creating a complex system, and GENREs are after
all simplified models [57].

• Many characteristic phenotypes of several organisms arise when they interact with
other species [73, 74]. GENREs enable to analyse interactions between organisms,
like for example mutualism, comensalism, parasitism, etc. [74]. It is worth men-
tioning in this respect the work of Bordbar et al. [75], where the authors developed
a model of parasitism between a human cell and the bacterium that causes tuber-
culosis, Mycobacterium tuberculosis.

• Metabolic reconstructions serve as a framework for the contextualization of data
obtained using high-throughput techniques [76]. A functional way to apply GEN-
REs for contextualization of experimental data, like gene expression or 13C flux
data, is by imposing constraints on the fluxes of GENRE based on experimental
values. If experiments suggest for instance that reactions of a particular pathway
carry large fluxes, one can force the GENRE to have a minimal bound for these
fluxes so as to fit the experimental observations. Then, changes in the global flux
structure are studied and evaluated.

• Metabolic engineering involves the use of recombinant DNA technology6 to selec-
tively alter metabolism and improve a targeted cellular function [57, 77]. The use
of GENREs for metabolic engineering has led to what has been termed as Systems
Metabolic Engineering [78]. An example of the new advances in metabolic engi-
neering achieved using GENREs is the modification of Saccharomyces cerevisiae
to increase the production of industrially important intermediates of the Citric
Acid Cycle [79]. Another possibility is to study gene knockouts. More precisely,
in Ref. [80], the authors performed gene knockouts in Geobacter sulfurreducens
to maximally increase its respiration rate.

1.2.2 The Systems-Level Approach

GENRE reconstructions and the systems-level approach have led to the development
of the field called Systems Biology. It is an emerging interdisciplinary field applied
to biological systems that focuses on complex interactions using a holistic approach
[81]. It is not easy to have a precise and unique definition encompassing all the
concepts underlying Systems Biology.

6Recombinant DNA molecules are DNA molecules engineered to assemble genetic material from
multiple sources, creating sequences that would not otherwise be found in biological organisms.
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A possible definition was stated by Ideker et al. [82]:

Systems biology studies biological systems by systematically perturbing them (biologi-
cally, genetically, or chemically); monitoring the gene, protein, and informational pathway
responses; integrating these data; and ultimately, formulating mathematical models that
describe the structure of the system and its response to individual perturbations.

An alternative was given by Kitano et al. [9]:

To understand complex biological systems requires the integration of experimental and
computational research—in other words a systems biology approach.

These definitions share common features. On the one side, a systems-level approach
considers all the components and linkages constituting the system. On the other side,
the properties of the components and interactions must be integrated in a computa-
tional mathematical model. It is worth stressing the importance of the assembly of
these components, i.e., how components interact between them. This can be under-
stood with the analogy of a road-map as given in Ref. [8]. In order to understand
traffic patterns, it is necessary to know not only the static road-map but also how
cars interact to generate the observed final traffic patterns. Thus, to fully understand
a system in a systems-level approach, one needs the diagram with all the connec-
tions of all components but also the knowledge of why, how, and to which extent
components interact.

Systems Biology can therefore be defined as an approach whose aim is to study
biological systems focusing on all the constituents and interactions. In this way,
emergent properties which are not present at the level of the single components
of the system can be discovered, and phenotype and behaviour can be related to the
underlying systems architecture. Central to Systems Biology is the holistic approach.
Holism is based on the idea that natural systems and their properties should be
viewed as a whole instead on focusing on the parts that constitute the system (see
Fig. 1.6). Contrarily, the focusing on single parts is called reductionism. Examples
of traditional reductionist approaches are the study of a single protein or a single
chemical mechanism, and they have dominated Biochemistry [83] and Molecular
Biology [84] for decades.

Systems Biology represents a paradigm shift that requires the interplay between
different disciplines, e.g., Biology, Physics, Mathematics, Chemistry, Computer
Science, etc. [85, 86]. SystemsBiology foments interactions from traditional compu-
tational scientists, modelling experts, and experimental researchers. Research devel-
oped to date typically requires powerful computational tools, and this particular
emphasis in Systems Biology has given rise to the subfield known as Computational
Systems Biology or Computational Biology [85].

Systems Biology has grown in parallel to the development of the omics fields.
Omics are different disciplines integrating and analysing different kinds of data. Sys-
tems Biology combines the datasets obtained in these disciplines in order to achieve
the maximum knowledge to model an organism (see Fig. 1.7). Examples of omics
related to genes are Genomics, which involves sequencing an organism genome,
and Transcriptomics, which evaluates gene transcription. In relation with proteins,
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the field called Proteomics measures protein abundance. Regarding metabolism,
Metabolomics deals with the study of the concentration of all the compounds present
in a organism. There is another important omic field, in line with this thesis, which
studies the chemical fluxes in metabolism, Fluxomics [87, 88]. Fluxomics provides
a measure of a metabolic phenotype as the set of fluxes going through all reactions
in a metabolic network.

The holistic viewofmetabolism including reactions,metabolites, enzymes, genes,
and fluxes, represents a new paradigm that requires new tools. Complex Network
Science [14, 15] has become a new promising domain for the study of biological
systems.Metabolism is formed by a large amount of components and interactions and
can be categorized as a complex network and, thus, many applicable techniques that
belong to the complex network field are appropriate for the the study of metabolism.

In fact, some of the applications of Complex Network Science ideas to cell
metabolism have led to the discovery of many unenvisaged properties such as the
existence of loops [89], optimal pathway usage [90], and metabolite connectivity
[91]. Other possible discoveries are the exploration of evolutionary relationships
[92]. In addition, complex networks applied to metabolism serve as a tool for the
identification of how evolutionary pressure has shaped the topological features of
metabolic networks, such as the degree distribution [7, 93–95]. Therefore, the joint
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use of complex network methodologies and Systems Biology provides an excellent
arena to studymetabolic capabilities and the evolutionary forces that shapemetabolic
networks.

1.3 Aims and Objectives

This thesis aims at studying cell metabolism from a systems-level perspective, i.e.,
taking metabolism as a whole.

In particular, one of the questions is how metabolism responds as a whole when
some of its constituents fail, i.e., when reactions or genes are non-operative by
removal or mutation. It is important to mention that the aim is not to focus on
the study of how to perform biochemically the perturbation or the analysis of bio-
chemical failures at a molecular level. Instead, the investigation focus on the impact
on the whole system of harmful situations and how metabolism is able to overcome
them as a whole entity. In this way, one can study how different pathways reorganize
to adapt to perturbations, something impossible to understand by typical molecular
biology studies centred on single constituents.

Another question addressed in this thesis is focused on filtering metabolic net-
works in order to extractmetabolic backbones providing valuable biological informa-
tion. To do this, FBA and the disparity filter [96] are used. The disparity filter allows
to extract backbones of the metabolic network containing the significant links. The
analysis ofmetabolic backbones allows the identification of pathwayswith important
roles in survival. The first role corresponds to pathways that have been present in
organisms since the first stages of life, i.e., pathways central in long-term evolution.
The second role corresponds to pathways more sensitive to external stimuli, i.e.,
pathways displaying short-term adaptation.

The last question addressed in this thesis is the assessment of FBA solutions in
relation to all the feasible flux space, so as to identify whether solutions obtainedwith
this technique describe reliably the set of possible metabolic states or, on the con-
trary, the FBAsolution is uninformative of the entire set ofmetabolic phenotypes. The
space of metabolic flux states can be exploited with different strategies. It can be used
as a benchmark to calibrate the distance of FBA fluxes as compared to experimen-
tal measures, or to identify metabolic phenotypes unreachable by constraint-based
techniques.

The main objectives of this thesis are summarized in the following bullet list:

• To study whether the structure of metabolic networks has evolved towards robust-
ness resisting external perturbations, like gene or reaction removals or mutations.

– To study the spreading of a cascade when a reaction or a pair of reactions fail,
unveiling the interplay between multiple cascades.

– To study the propagation of the damage to metabolism when genes fail.
– To discuss the findings in terms of an evolutionary perspective.
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• To study the effects on fluxes of individual and pairs of reactions knockouts using
FBA.

– To study the activity and essentiality of reactions.
– To understand the mechanisms of synthetic lethality, unveiling the plasticity and
the redundancy capabilities displayed by the metabolic networks of bacteria.

– To study the dependence of plasticity and redundancy on the environment.

• To identify those pathways that perform important roles for the survival of an
organism.

– To check the efficiency of the disparity filter on metabolic networks.
– To analyse backbones in terms of the long-term evolution of organisms
– To extract information about the short-term adaptation of metabolism to the
external environment.

• To assess the FBA solution in the entire space of metabolic solutions.

– To demonstrate that solutions obtained using FBA as a constraint-based tech-
nique may be uninformative of typical behaviours.

– To provide a benchmark to calibrate FBA.
– To recover phenotypes not attainable by constraint-based techniques by using
the full metabolic solution map.

1.4 Outline

After this introduction to cellular metabolism and its genome-scale models, Chap. 2
presents the general tools, methodologies, and GENREs used in this thesis.

Chapter 3 starts by considering a structural study of how metabolic networks of
the bacteriaMycoplasma pneumoniae, Escherichia coli, and Staphylococcus aureus
respond to internal perturbations, like removals of reactions or genes individually
or in pairs, i.e., how the structure of the metabolic network is damaged following
an internal failure which propagates as a cascade, by which the metabolic capabil-
ities of an organism are weakened. Further, these results are linked to evolutionary
explanations, i.e., how evolution has shaped and dictated the form of metabolic net-
works so as to respond to perturbations. This discussion is related with the robustness
of organisms, in order to unveil whether the structure of the metabolic network is
prepared to suffocate the advance of a damage cascade.

Chapter 4 extends the structural study of perturbations to flux distributions
obtained using FBA. This study allows, on the one side, to know whether there
are important reactions that must be always active in order to guarantee the sur-
vival of an organism and, on the other side, to check whether cell metabolism has
developed protection mechanisms when some of its parts are unable to work. In
this respect, synthetic lethal reaction pairs are analysed. These are pairs of reactions

http://dx.doi.org/10.1007/978-3-319-64000-6_2
http://dx.doi.org/10.1007/978-3-319-64000-6_3
http://dx.doi.org/10.1007/978-3-319-64000-6_4
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whose removal from is lethal, but metabolism is still able to survive when each reac-
tion forming the pair is removed individually. This allows to identify two different
mechanisms, plasticity and redundancy, which have helped to protect metabolism
against possible reaction failures.

Chapter 5 analyses metabolic fluxes so as to extract more biological informa-
tion on how organisms adapt to external environments and evolve. To perform this
analysis, the disparity filter is used in order to obtain backbones as reduced versions
of metabolism without losing its properties as a complex network. The structure of
these backbones unveils pathways with a prominent role in the long-term evolution
of the organisms and in their short-term adaptation to the environment.

Chapter 6 revises the FBA technique in relation to the whole set of feasible flux
states in a metabolic network. FBA uses a strong assumption -organisms try to grow
as much as possible-allowing to solve the mass action equations at steady state
describing metabolism without the need of kinetic parameters. This assumption is
commonly applied due to the lack of availability of kinetic constants of reactions.
It is worth exploring the distribution of possible fluxes without making use of the
assumption of maximal growth. This allows to perform a mapping of all the feasible
flux solutions in metabolism and thus to assess the relevance of the solution obtained
by FBA compared to all the other possible solutions.

General conclusions are given in Chap. 7. At the end of the thesis, there are four
appendixes reviewing the basics of some specific tools used in Chaps. 3, 4, 5, and 6.
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Chapter 2
Methods and Data

This chapter describes the basics of the fundamental techniques used in this thesis. It is
divided in three parts: (1) complex network tools applied to metabolism, (2) description of
Flux Balance Analysis (FBA) -used to compute metabolic fluxes at steady state- and of Flux
Variability Analysis -a variant of FBA to bound minimum and maximum fluxes for each
reaction- and (3) a description of all the genome-scale metabolic reconstructions analysed
in this thesis.

Nowadays, the explosion in computational power has allowed us to deal with systems
of thousands or even millions of constituents and interactions, boosting the degree
of our understanding on how these systems are structured and behave. Complex
Network Science comprises a large amount of techniques and models which help us
to study these intricate systems as awhole [1, 2]. Thesemethodologies can be applied
to any system which can be modelled as a network. Networks can be briefly defined
as a set of items that interact, like for example the World Wide Web and the Internet
and, in a biological context, metabolic networks [3] or protein–protein interaction
networks [4]. Complex Network Science has led to an important advance in the
understanding of metabolic networks [3, 5–9] which is in line with the systems-level
view of metabolism in fields like Systems Biology [10, 11].

When dealing with metabolic networks, the complex network approach has to be
combinedwith other techniques coming fromSystemsBiology in order to understand
functional or behavioural features, for example why the inability to operate of some
reactions leads to cell death, or why some reactions carry a determinate flux given
a set of external nutrients. The most widespread mathematical approach used for
the systems-level analysis of metabolic networks is Flux Balance Analysis (FBA)
[12]. This technique is based on constraint-based analysis and optimization of an
objective function, usually the biomass formation function of the cell. In this way,
the fluxes through all the biochemical reactions of cell metabolism that maximize the
biomass formation rate or, equivalently, the specific growth rate, can be computed.
Apart from the mentioned reaction fluxes and growth rate, this technique allows to
compute, for instance, the maximum yield of important compounds such as ATP or
NADH[12, 13], and the effects of knockouts of genes or reactions [14, 15]. Related to
FBA, other related techniques like Flux Variability Analysis (FVA) [16, 17] allow to

© Springer International Publishing AG 2017
O. Güell, A Network-Based Approach to Cell Metabolism, Springer Theses,
DOI 10.1007/978-3-319-64000-6_2

25



26 2 Methods and Data

identify possible alternate solutions and, in conjunction with FBA, allow to perform
a deep study of the flux capabilities of metabolic networks.

Complex network methodologies and constraint-based techniques applied to
metabolic reconstructions represent a powerful tool for the analysis and development
of new insights into metabolic functions and mechanisms that cells have developed
from the earliest stages of life to the current days.

2.1 Structural Properties of Metabolic Networks as
Complex Networks

Networks are discrete systems of elements that interact. These systems are repre-
sented by graphs of nodes (or vertices)—which represent elements—connected by
links (or edges)—which represent interactions. The presence of a large number of
nodes interacting in non-trivial connectivity patterns between order and disorder is
what gives to networks their intrinsic complexity.

It is important to distinguish between complex and complicated. The main dif-
ference between these two words is better explained by a single example: solving
a whole metabolic network composed of thousands of reactions is a complex prob-
lem in the sense that the large amount of interactions leads to emerging unexpected
behaviours, like the effect of the removal of a biochemical reaction on other reactions,
which can increase or decrease their fluxes depending on their biological activity. On
the contrary, the study of a typical chemical engineering process to obtain a precise
output may be a complicated problem, since one needs to draw a flowchart of all the
chemical reactions and involved intermediate species that participate in the chemical
synthesis. This may require a wide knowledge of the system, implying a large degree
of control on all the processes, but the final behaviour of the system will be what is
expected in a well-designed process.

2.1.1 Basic Representation Frameworks

Links in networks can have either a defined direction or may lack it. Therefore,
when links are directed, they are depicted by arrows, specifying a source and a
target. A directed link can represent, for example, a transformation between two
metabolites, typically a reactant and a product with the link pointing to the product.
When no specification source/target is prescribed, the interaction is mutual, like in a
protein–protein interaction,1 and links without direction are used. Associated to this,
networks are classified asdirected,undirected, or semidirected. It isworthmentioning
that links can also be bidirectional, meaning that the interaction allows either the

1Protein–protein interactions refer to physical contacts established between two or more proteins
as a result of biochemical events and/or electrostatic forces.
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forward or backward direction at the same time and this interconnection is thus
reciprocal. This is specially important in the context of metabolic networks, where
reactions can be either reversible (bidirected links,meaning that both directions of the
reaction are possible) or irreversible (directed links, meaning that only one direction
is thermodynamically favoured).Moreover, a link can carry aweight, representing the
intensity of the interaction.Therefore, networks canbeweightedorunweighted. In the
case of metabolic networks, weights usually correspond to fluxes of the biochemical
reactions. Metabolic networks typically display a probability distribution of fluxes
(or weights) that follows a power law, meaning that fluxes spanning different orders
of magnitude coexist in the same metabolic state [18].

Mathematically, unweighted undirected networks are described by the adjacency
matrix, a square symmetric matrix {ai j } of binary values with an entry of 1 whenever
there is a link between nodes i an j and 0 otherwise. In directed networks, the matrix
is instead non-symmetric.Weighted networks are encoded by theweighted adjacency
matrix {ωi j }, in which the values correspond to the weight of the edge between nodes
i and j .

Furthermore, networks can have different classes of nodes, leading to the so-
called multipartite graphs. In multipartite graphs, links happen only between nodes
in different categories. Networks with one kind of node are called unipartite, whereas
networks with two kinds of nodes are called bipartite [19]. An important thing
to notice is that bipartite networks can be projected into unipartite networks by
performing a one-mode projection. To do this, one chooses a particular type of node
and, in the projected reduction, places a link between two such nodes if there is at
least one node of the complementary type connected to both of them.

In the real world, one can find networks combining all the mentioned properties
(see Fig. 2.1). Metabolic networks are usually represented as bipartite semidirected
networks, with metabolites and reactions belonging to different node categories with
no direct connections between any two metabolites or any two reactions [21, 22]
(see Fig. 2.1d). Although a bipartite representation is more accurate, it is sometimes
preferable and always simpler to work with one-mode projections based on metabo-
lites, which can be either directed or undirected (see Fig. 2.1a, b) depending on the
reversibility of reactions, and weighted or unweighted depending on whether fluxes
are taken into account. In such a projection, two metabolites get directly connected
if there is at last one reaction in which they both participate (see Fig. 2.1f).

2.1.2 Degree Distribution

Nodes in networks are locally characterized by the number of their surrounding
neighbours. This magnitude is called the degree of a node k (see Fig. 2.2). The
probability of nodes having a certain degree k is written P(k) and named degree
distribution, and can be computed from the fraction of nodes in the network that has
degree k.
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(a) (b)

(d)

(f)

(c)

(e)

Fig. 2.1 Examples of different types of networks. a Undirected unipartite. b Directed unipartite.
c Undirected bipartite. d Semidirected bipartite network. Notice that connections involving node
e are bidirectional. e Semidirected weighted bipartite. The thickness of the links is proportional to
their weight. f Example of the transformation into a one-mode projected network of metabolites
from a semidirected bipartite metabolic network containing metabolites and reactions. Metabolites
are represented by circles and reactions by squares. Parts of this figure have been extracted from
Ref. [20] Copyright @ 2014, World Scientific Publishing

Usually, real world networks show degree distributions P(k) that are highly
skewed with long tails that reach values far above the mean [23]. In most cases,
degree distributions follow a power-law, P(k) ∝ k−γ , where γ is the characteristic
exponent and it has values in the range 2 < γ < 3. Networks with a degree distri-
bution described by a power-law are called scale-free.2 Networks with power-law
degree distributions have attracted much attention and have been studied intensively
[24–26]. Notice that, usually, it is useful to work with the complementary cumulative
probability distribution function P(k ′ ≥ k) in order to avoid noise effects present for
large values of k.

In semidirected networks, the degrees of nodes are defined in relation to incoming
(kin), outgoing (kout ) and bidirectional (kb) links. Correspondingly, nodes have a total
degree expressed as a sum of contributions k = kin + kout + kb. These degrees can
present local correlations and so the degrees of nodes are described by the joint
probability P(kin, kout , kb). In addition, for bipartite networks, nodes of each kind
have also their own degree distribution.

2This name is refers to the scale-invariance that power-laws display: if f (x) = a(x)γ , then f (cx) =
a(cx)γ = cγ f (x).
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undirected directed

k=5 kin=3 kout=2 k=5
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kin=3 kout=1 kb=1

Fig. 2.2 Schematic example of a degree of a node (left) and a path between two nodes (right). Left
Example of the degrees in a undirected, semidirected, and directed networks. Right Path between
node a and b, highlighted in green. In this case, the shortest path length between nodes a and b is
�ab = 5 (color figure online)

Regarding specifically metabolic networks, the total degree of metabolites kM
in bipartite representations follows a power-law degree distribution P(kM) ∝ k−γ

M
[1, 7]. In Ref. [3] it is found that in the organism Escherichia coli, the probability
P(kin) that a metabolite participates as a product and the probability P(kout ) that a
metabolite participates as a reactant have both a value of γ of 2.2. Similarly, Ref.
[27] shows that for the organism Helicobacter pylori, the exponent has a value of
2.32. The fact that metabolites display a scale-free degree distribution means that
there is a high diversity in the number of reactions in which metabolites participate.
The largest part of metabolites have a few connections, whereas a few metabolites,
generically called hubs, have many of them. Examples of these highly-connected
metabolites are ATP, H2O, or H+, which can participate in up to 50% of the total
number of reactions for the case of H+ in the organism E. coli [28]. On the contrary,
reactions show a peaked distribution of total degree, the peak being located at an
average degree< kR >∼4. The bounded form of the distribution arises from the fact
that reactions have a limited number of participants, typically from 2 to 12.

In Fig. 2.3a, the bipartite cumulative probability distribution function P(k ′
M ≥

kM) of metabolites and the bipartite probability distribution function P(kR) for reac-
tions of the three organisms analysed in this thesis, E. coli [29–31], Mycoplasma
pneumoniae [32, 33], and Staphylococcus aureus [34] are shown. Clearly, metabo-
lites show a power-law degree distribution and reactions a peaked distribution, as
mentioned above. In fact, all networks studied here have similar tendencies for both
distribution functions, showing that metabolic networks, in spite of corresponding
to quite different microorganisms, display often universal properties [3].

2.1.3 Average Path Length

Another common feature of complex networks, and in particular of metabolic net-
works, is the fact that any two nodes are connected by paths of links that are typically
very short in the number of intermediate steps [7]. This is called the small-world
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Fig. 2.3 Features of the networks of Escherichia coli iJO1366 (see Sect. 2.3.1),Mycoplasma pneu-
moniae iJW145 (see Sect. 2.3.2), and Staphylococcus aureus iSB619 (see Sect. 2.3.3). a Com-
plementary cumulative probability distribution function of metabolites. b Degree distribution of
reactions. Extracted from Ref. [35]

property. In technical terms, the distance � between two nodes is defined as the num-
ber of jumps or hops along the shortest path that connects them (see Fig. 2.2). Hence,
it is possible to define the average shortest path length< � >, which is the average of
all the shortest distances between pairs of nodes. The small-world property is stated
in the fact that < � > increases as the logarithm of the network size N (number of
nodes) [23, 25].

Small average path lengths indicate that the network contains highly-connected
nodes that act as shortcuts, reducing the average number of steps needed to go from
one node to another. This is crucial in many real contexts, and in particular for
cell metabolism. In Ref. [3], the authors measured the average path length for 43
organisms and found a similar value for all of them, < � >∼ 3.2. This value was
explainedby the role of hubs,whichdecrease dramatically the number of steps needed
to travel from one node to another. When hubs are not taken into account, longer
and variable path lengths are obtained [36, 37], depending on the biological domain
where organisms belong to. Typical values are 9.57, 8.50, and 7.22 for eukaryotes,
archaea, andbacteria, respectively,with the differences due to evolutionaryprocesses.
Nevertheless, there remains some controversy about the small-world property in
metabolic networks. In Ref. [38], it is stated that usually paths are computed by
directly linking metabolites through reactions and that this is not adequate, since
pathways computed in this way do not conserve their structural moieties3 and thus
they do not correspond to pathways on a traditional metabolic map. Therefore, in
Ref. [38] metabolites are linked depending on the conserved structural moieties in
the adjacent reactions and, as a result, it is stated that the average path length of
E. coli metabolism is longer than it was previously thought and, consequently, the

3According to the IUPAC, a moiety is a part of a molecule that may include either whole functional
groups or parts of functional groups as substructures.
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E. coli metabolic network is not small in terms of biosynthesis and degradation of
metabolites. However, it is generally accepted that metabolic networks show indeed
the small-world property at the structural level. In this thesis, path lengths will be
computed in Chap.4.

2.1.4 Communities at the Mesoscale

It is thought that biological networks are composed by subsets of nodes that are
functionally separable called modules [25, 39]. In general, this idea corresponds
to the concept of communities in networks. The organization of a network into
communities does not imply fragmentation. Instead, communities are subsets of a
network which contain a dense interconnection pattern between nodes inside the
community and lower interconnection levels with nodes outside. This can be related
with the presence of a large clustering (see Sect. 2.1.6) between nodes inside the
community.

Community detection [40] represents an active field in Complex Network Science
motivated by the potential identification of communities with functional or opera-
tional units. Several methods, based on different exploratory techniques, have been
proposed. Among the most successful community detection methods one finds, for
instance, algorithms that use randomwalkers to partition the network into communi-
ties, like Infomap [41]. Other methods are based on the optimization of modularity.
Modularity is a measure of the quality of a community structure [42]. It measures the
internal connectivity of identified communities with reference to a randomized null
model with the same degree distribution. Algorithms based on modularity optimiza-
tion try to find the best community structure in terms of the modularity measure.
Examples of successful algorithms based on this measure are SpinGlass [43] or
Louvain [44]. On what follows, the three methods used in Chap. 3 of this thesis to
detect communities are explained.

• Distance hierarchical clustering: this method starts by defining a distance between
pairs of nodes in the network. Then, once the pairs of nodes have a defined distance,
one groups similar nodes into communities according to this distance. There are
different schemes based on distances to group nodes intro communities. The two
simplest methods are single-linkage clustering, in which two sets of nodes are
considered separate communities if and only if all pairs of nodes in the different
sets have distance larger than a given threshold, and complete linkage clustering,
in which all nodes of a community have a distance smaller than a threshold [45]
(see Fig. 2.4).

• Infomapalgorithm [41]: themain idea of this algorithm is that a randomwalkerwill
tend to flowat different paceswithin a network, spendingmore time inside commu-
nities and less time to pass between them (see Fig. 2.4). The way in which the ran-
dom walker moves around communities can be compared to the flow of messages
between individuals. In this way, there is a strong current of messages between

http://dx.doi.org/10.1007/978-3-319-64000-6_4
http://dx.doi.org/10.1007/978-3-319-64000-6_3


32 2 Methods and Data

individuals inside a community, and a weaker current of messages between indi-
viduals of different communities.

• Recursive percolation: this method has been developed in a work related to this
thesis [35]. Recursive percolation identifies components in which the network is
fragmented just below the percolation threshold (see Sect. 2.1.5), where the con-
nected network disaggregates into smaller components. To find them, links are
removed sequentially from lower to higher weights until the percolation transition
is detected. Then, clusters are identified using a burning algorithm [46]. This pro-
cedure is applied to each component until the distribution of sizes of the obtained
communities reaches some thresholds, for instance, to be similar to those given by
the distance hierarchical clustering technique and Infomap. A schematic example
of this process is shown in Fig. 2.4.

2.1.5 Large-Scale Connected Components

Global connectedness is one of the most fundamental properties of complex sys-
tems. The theory that describes the behaviour of network connected components is
percolation theory. Briefly, percolation theory states that there exists a critical point,
called percolation threshold and denoted as pc, where a transition in the global con-
nectedness of the network occurs, from a state where the network is formed by small
isolated components to the emergence of a giant connected component (GCC) span-
ning a macroscopic fraction of the network. This means that it is always possible to
find a path connecting every pairs of nodes inside the GCC.

This concept can be extended to networks with directed links. The connectivity
of directed networks presents special features since the path between two nodes i
and j can be different when going from i to j or vice versa. This fact leads to the
existence of a bow-tie structure inside the GCC [22, 47, 48]. The main feature of the
bow-tie structure of a GCC in a directed network is that one can detect the presence
of a strongly connected component (SCC), which is a region of the network where
any node is reachable from any other by a directed path. It can happen that directed
networks contain more than one SCC.

Apart from the SCC, one of the other significant regions that can be found in
the bow-tie structure of directed networks is called IN component, with nodes that
can reach the SCC but that cannot be reached from the SCC. Analogously, the OUT
component contains nodes that can be reached from the SCC but that cannot return
to it. Tubes are sequences of nodes that connect the IN with the OUT component
without going through the SCC. Finally, tendrils are composed by nodes that have no
access to the SCC and that are not reachable from it, similarly to tubes. They go out
from the IN component and come in from the OUT component. A visual scheme of
the bow-tie structure of directed networks is shown in Fig. 2.5a. The bow-tie structure
of E. coli and Mycoplasma pneumoniae will be explicitly considered in Chap.5.

http://dx.doi.org/10.1007/978-3-319-64000-6_5
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(b)

(a)

(c)

Fig. 2.4 Examples of the clustering methods. a Example of the distance hierarchical clustering
method. Modules are formed by nodes that are nearer. Notice that with this method it is necessary
to apply a threshold depending on the distances. In this example, the threshold is represented by the
green rectangle. At this level, three communities are detected. b Example of the Infomap algorithm.
Clusters are found with a random walker. Communities are found depending on the frequency of
times that each random walker visits a set of nodes. c Example of the application of Recursive
percolation. The first step leads to 10 clusters. Among these 10 clusters, the largest are fragmented,
leading to more clusters. This partition is iterated until the distribution of sizes is similar to that in
other methods. Parts of this figure have been extracted from Ref. [35] (color figure online)
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Fig. 2.5 Examples of connected components. a Schematic example of a bow-tie structure. bExam-
ple of the bow-tie structure of Mycoplasma pneumoniae [32], an organism studied in this thesis.
Blue nodes compose the SCC, red nodes compose the IN component, and green nodes compose
the OUT component (color figure online)

Metabolic networks showabow-tie structure typicallywith a large SCCconnected
to non-structured IN andOUTcomponents (see Fig. 2.5b) [47, 49]. The SCCcontains
the largest part of metabolites and reactions composing the network, representing
thus the entire metabolic machinery of cells. IN and OUT components are formed
of, respectively, nutrients and waste products directly connected to the SCC (see
Fig. 2.5b).
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2.1.6 Other Structural Properties of Complex Networks

Real networks exhibit also the presence of non trivial correlations in their connec-
tivity. At the level of two nodes, it is convenient to characterize degree correlations
with the average nearest neighbour degree k̄nn(k) = ∑

k ′ k ′P(k ′|k), where P(k ′|k)
is the probability of having a node with degree k ′ given that it is connected to a node
with degree k. It basically considers the mean degree of the neighbours of a node
as a function of its degree k. If k̄nn(k) increases with k, it is said that the network is
assortative, with nodes that connect preferentially to other nodes of similar degree.
If k̄nn(k) decreases with k, the network is named disassortative, with high-degree
nodes attached preferentially to nodes with low degrees. Biological networks, and
in particular metabolic networks, usually show a disassortative pattern [7].

Correlations among three nodes can be measured by means of the concept of
clustering, which refers to the tendency to form triangles between the neighbours of
a vertex.Watts and Strogatz [50] proposed ameasure known as clustering coefficient,
ci = 2Ei

ki (ki−1) , where Ei is the number of edges that exist between neighbours of the
node i and ki denotes the degree of the node i . Although this measure is helpful
as a first indication for clustering, it is more informative to work with quantities
which depend explicitly on the degree k. Therefore, a degree-dependent clustering
coefficient c̄(k) is calculated as the clustering coefficient of nodes averaged for each
degree class k. Metabolic networks tend to display high levels of clustering [5, 25]
with c̄(k) having a decreasing dependence on k [6].

A final mention is deserved to structures called motifs [11]. Motifs are small
subsets of connected nodes that are found in networks more often than expected at
random. They are considered as elementary functional units, and each real network
has its own set of distinct motifs. Their identification provides useful insights into
the typical local connectivity patterns in the network.

2.1.7 Null Model Networks and Randomization Methods

Null models in Complex Network Science serve to study fundamental properties
of complex networks and to asses the statistical significance of a property, first
measuring it in the real network and then comparing the original results to the ones
obtained in the randomized versions. Thesemodels can be used to prove the existence
of graphs satisfying various properties, or to provide a rigorous definition of what it
means for a property to hold for almost all graphs or, finally, to act as a benchmark
for specific features of real networks.

One of themost knownmodelswas the graph structure proposed byPaulErdös and
Alfréd Rényi. The Erdös–Rényi model [51, 52] consists on generating realizations
of random networks given the total number of nodes N and a total number of links L ,
and connecting every pair of themwith probability p. This leads to a binomial degree
distribution, that can be approximated by a Poisson distribution for realizations with
a large number of nodes.
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Another important method to construct random networks is the Configuration
model, an algorithm to construct random networks with a degree sequence or degree
distribution P(k) settled a priori [53, 54]. The total number of nodes N remains
constant. For each node, a randomnumber k is drawn from the probability distribution
P(k) and it is assigned to the node in the form of half-edges. The network is then
constructed by connecting pairs of these link ends chosen uniformly at random.These
realizations, like the Erdös–Rényi networks described above, are uncorrelated and
have no clusters in the thermodynamic limit N → ∞.

Instead of comparing real networks with null models as those described above, it
is sometimes preferable to randomize a network obtained from real data by rewiring,
i.e., by picking two links at random and swapping their end [55].While randomizing,
one can preserve different properties, for instance the degrees of all nodes. Two
rewiring randomization methods have been used in this thesis, one that preserves the
degrees of all nodes—similar to comparing with the Configuration model—called
degree-preserving randomization, and another that generates randomized versions
taking into account that new reactions must be stoichiometrically balanced, called
mass-balanced randomization.

2.1.7.1 Degree-Preserving Randomization

In metabolic networks, the degree-preserving randomization method is similar to
the Configuration model in bipartite networks. Degree-preserving randomization
works by choosing two pairs of connected nodes (metabolites and reactions) of the
bipartite network at random and swapping their ends, unless this would lead to a
repeated metabolite in a reaction (see Fig. 2.6, left). The steps of the algorithm are:

1. Pick two links at random: m1 → r1 and m2 → r2 or r1 → m1 and r2 → m2,
where m are metabolites and r reactions.

2. Swap the end of the links avoiding repeated links and self-production: (m1 → r2
and m2 → r1 or r1 → m2 and r2 → m1).

3. Repeat until L2 swappings are performed, where L is the total number of links
in the network.

4. Make several realizations of the randomized metabolic network following the
three previous steps.

Reversible reactions are rewired independently of the irreversible ones in order to
preserve the degrees of metabolites which correspond to reversible and irreversible
reactions. This method gives networks which preserve the degrees of metabolites and
reactions and it is useful, for instance, to determine the role of the degree distribution
in large failure cascades in bacterial organisms, which may have evolved towards
reducing the probability of having large cascades that produce metabolic damage,
increasing thus robustness [56]. This method will be used in Chap.3.

http://dx.doi.org/10.1007/978-3-319-64000-6_3
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Fig. 2.6 Left Scheme of the degree-preserving randomization algorithm. IN and OUT degrees are
conserved, but mass balance is not satisfied. Right Scheme of the mass-balanced randomization. In
this case metabolites are switched only if the new reaction is mass balanced; while reaction degrees
are kept constant, the degrees of metabolites are not preserved. Extracted from Ref. [57] Copyright
@ 2012, PACIS-JCIS
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2.1.7.2 Mass-Balanced Randomization

Mass-balanced randomization generates randomized networks by rewiring the links
corresponding to substrate-reaction or product-reaction relationships, while preserv-
ing atomic mass balance of the reactions [58]. Given a reaction r , its atomic mass
balance is given by: ∑

e∈Er

se,r · me =
∑

p∈Pr

sp,r · mp (2.1)

where Er denotes the set of substrates and Pr the set of products in r , and me,mp

are the mass vectors (mH2O = (0, 2, 0, 1, 0, 0) ·(C, H, N , O, P, S)T as an example)
of e and p, respectively. Finally, se,r , sp,r are their stoichiometric coefficients. For
instance, consider the reaction A → B, withmA =mB =C6H12O6. Then, Amay be
substituted by a compoundC withmC = C3H6O3 fromwithin the network, resulting
in the randomized reaction 2 C → B, which satisfies Eq.2.1 since 2 C3H6O3 =
C6H12O6 (see Fig. 2.6, right). In addition to substituting individual substrates or
products, the method also allows more complex substitutions involving pairs of
substrates or products, yielding a large number of possible substitutions.

The motivation for preserving atomic mass balance of reactions, a fundamental
physico-chemical constraint, is that the resulting null model allows estimating the
importance of network properties with respect to evolutionary pressure. As biologi-
cal systems and their properties evolve under physical constraints and evolutionary
pressure, a null model which satisfies physical principles but does not account for
evolutionary pressure differs from a metabolic network only in the properties which
are affected by evolutionary pressure. Thus, a property deemed statistically signif-
icant following mass-balanced randomization is beyond basic physical constraints
and likely to be a result of evolutionary pressure [59]. The method preserves mass
balance and reaction degrees but not the degrees of metabolites, since the stoichio-
metric coefficients and metabolite degrees are changed. This method will be used
in Chap.3.

2.2 Flux Balance Analysis

A general aim of the study of a metabolic network is to characterize and understand
the configuration of fluxes of the reactions constituting the network in connection to
phenotype and behaviour. The study of fluxes in metabolic networks deserves a spe-
cial treatment more biochemically focused than in usual chemical kinetics schemes.
With the knowledge of the kinetic constants of the reactions, it would be possible
to solve the equations associated to the fluxes of reaction and the concentrations of
metabolites in the metabolic network using proper mathematical methods. However,
there is a lack in the availability of kinetic parameters [60] due to the difficulty in
measuring them experimentally. As an alternative, computational techniques have
been proposed in order to estimate fluxes through reactions of metabolic networks
at steady-state.

http://dx.doi.org/10.1007/978-3-319-64000-6_3
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Flux Balance Analysis is maybe the most successful and widely used approach
to compute the fluxes through metabolic reactions of an organism. In addition, FBA
also estimates its growth rate by maximizing the flux through the biomass reaction
of the network. This technique will be used in Chaps. 4, 5, and 6.

To be more specific, metabolic reactions can be represented in terms of a sto-
ichiometric matrix, this being the fundamental basis in FBA and other modelling
approaches [12, 17, 61, 62]. To construct a stoichiometric matrix [63–65], one must
first write the typical kinetic equations which describe the temporal variation of the
concentration ofmetabolites,which are derived from themass conservation principle,

dci
dt

=
NR∑

j=1

Si, jν j (2.2)

The concentration of metabolite i is denoted by ci , NR is the total number of
reactions, Si, j is the stoichiometric coefficient of metabolite i in reaction j , and ν j

stands for the flux of reaction j . Note that, typically, reaction fluxes have units of
mmol gDW−1 h−1, where gDW means grams Dry Weight. Notice that the values of
the Smatrix correspond to the stoichiometric coefficients of each metabolite in each
reaction. Thus, each row represents a metabolite, whereas each column represents a
reaction. Therefore, if a metabolite i does not participate in a reaction j , its stoichio-
metric coefficient will be 0, Si j = 0. Otherwise, if the metabolite is a reactant, the
stoichiometric coefficient will be negative, Si j < 0, and if it is a product, it will be
positive, Si j > 0 (see Fig. 2.7).

Fig. 2.7 Equations derived from mass-balance associated to a simple metabolic network. Matrix
S is the so-called stoichiometric matrix, 	ν is a vector containing all the fluxes of the metabolic
network, and 	c denotes the vector with concentrations of metabolites

http://dx.doi.org/10.1007/978-3-319-64000-6_4
http://dx.doi.org/10.1007/978-3-319-64000-6_5
http://dx.doi.org/10.1007/978-3-319-64000-6_6
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Metabolic networks are open-systems, which implies that some metabolites can
leave or enter the organism. Therefore, it is not possible to arrive to a thermody-
namic equilibrium state. However, it is possible to attain a non-equilibrium steady
state, where the concentrations of metabolites do not change with time, forcing the
system to exchange metabolites with the environment. This steady-state condition
simplifies the system of coupled differential Equation2.2 derived frommass balance
into an ordinary linear system of equations, which can be written as a product of the
stoichiometric matrix S by the vector of fluxes 	ν,

S · 	ν = 	0 (2.3)

This is the typical form of the equation to be solved by the FBA technique. As
mentioned before, it is important to notice that no kinetic parameters [66, 67] appear
explicitly in Eq.2.3 and, thus, they are not needed in relation to FBA applications.

It is important to precise that, apart from the intrinsic constraints imposed by the
steady-state condition, other bounds of the form αi ≤ νi ≤ βi may be imposed on
the values of the fluxes to render the whole scheme both chemically and biologi-
cally realistic. These upper and lower bounds may depend on the thermodynamics of
reactions, more precisely on their reversibility. If reactions are reversible, fluxes can
have positive or negative fluxes, whereas for the case of irreversible reactions, reac-
tions must have only positive fluxes. Further, since the steady-state condition forces
the system to exchange metabolites with the environment, constraints on exchange
fluxes are imposed for metabolites that can either enter or leave the organism. These
exchange fluxes are taken positive from the system to the environment. Notice that
fluxes obtained using FBA will depend on the particular chosen external medium.

In metabolic networks, there are usually more reactions than metabolites. The
system of Eq.2.3 is thus underdetermined, i.e., there are multiple solutions even
after imposing the mentioned constraints. Therefore, a biological objective function
is introduced to restrict the solution space to a single biologicallymeaningful solution.
Technically, thismeans that FBA selects the state in the solution space thatmaximizes
the value of the objective function (see Fig. 2.8). This objective function depends
on the biological information that one wants to extract, but usually one chooses
to optimize biomass formation adjusted to be equivalent to maximize the specific
growth rate of the organism. To do this, a biomass reaction is added to the network
which simulates the biomass production. Other possible objective functions are ATP
or NADH production or yield.

Often, other auxiliary reactions are needed apart from exchange and the biomass
formation reactions. The first category includes physiological requirements, like the
ATP maintenance reaction, which is a reaction which consumes ATP in order to sim-
ulate biological energetic costs for the organism which are not associated to growth.
A second category are the so-called sink reactions, which are reactions that have not
been identified yet and that consume some metabolites to avoid accumulation. A
generic sink reaction has the simple form A → ∅.
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Fig. 2.8 Example of the optimization of an objective function on a system of two variables
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Fig. 2.9 Example of a FBA calculation in a metabolic network. Reactions are denoted by squares
andmetabolites by circles. The biomass production reaction (red square) is labelled asνg. Exchanges
fluxes for interactions with the environment (orange arrows) are denoted with b labels. A sink
reaction (cyan square) is shown with a s label. The ATPmaintenance reaction (green square) is also
shown denoted with aM label. Parts of this figure have been extracted from Ref. [20] Copyright @
2014, World Scientific Publishing (color figure online)

In this way, a consistent system of equations representing the whole cell
metabolism is obtained and one tries to find a solution that optimizes the value
of an objective function (see Fig. 2.9 for a schematic picture of a FBA computation).
If no solution exists for optimization of biomass production in a particular medium
condition, one can assume that the system is not able to grow and therefore one can
conclude that the organism is not able to survive in this medium.

The mathematical notation to denote a standard FBA problem choosing to opti-
mize the specific growth rate is

maximize νg
subject to S · 	ν = 	0
and 	α ≤ 	ν ≤ 	β

where 	α and 	β represent the vectors determining the lower and upper bounds of the
reactions, and νg denotes the specific growth rate.
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The software used to perform these calculations in this thesis is GNU Linear Pro-
gramming Kit (GLPK) [68–71], through its associated solver GLPSol. This solver
uses a dual simplex algorithm to compute the solutions. It is a variant of the nor-
mal simplex algorithm [72]. The latter is an iterative algorithm which is based on
finding first feasible solutions and then finding the most optimal solution based on
these feasible solutions. On the contrary, dual simplex works by first finding optimal
solutions and then finding a feasible solution, again, if it exists.

2.2.1 Formulation of the Biomass Reaction

FBA problems are usually solved by maximizing the flux through the biomass reac-
tion [29, 31, 33]. This typically gives a particular flux state of the metabolic network
compatible with the constraints. However, the solution obtained by FBA is often not
unique. In some cases, the metabolic network is able to achieve the same specific
growth rate by using alternate reactions and pathways. Therefore, phenotypically
different solutions that optimize the specific growth rate are possible, implying that
FBA solutions can be degenerate [12].

Technically, the biomass reactions is modelled as a reaction, aA + bB + cC +
dD... −→ x X + yY + zZ , which produces and consumes some specific metabolites
(see Fig. 2.9). These metabolites are known biosynthetic precursors present in the
metabolic network under consideration. The key point is given by their stoichiometric
coefficients in the biomass reaction, which are experimentally measured proportions
in the biomass of the organismmeasured in dryweight conditions. The stoichiometric
coefficients of the metabolites participating in the biomass reaction have units of
mmol gDW−1, and the biomass reaction has units of h−1. It is worth stressing that
this reaction simulates the growth of an organism given a set of external nutrients and
that its coefficients are adjusted so that its flux is equivalent to the specific growth
rate of the organism.

FBA can also maximize the biomass yield, which is the equivalent to maximize
the specific growth rate but taking into account that the maximum uptake of the
carbon source, for example glucose, must be set to 1 mmol gDW−1 h−1 to set the
maximum amount of biomass that can be produced per 1mol of nutrient.

2.2.2 Simulation of Different Environments

It is important to make explicit the way to simulate changes in the environment using
FBA. To do this, one must tune the upper and lower bounds of the values of the
exchange reactions of the metabolites that are present in the environment. As an
example, suppose that one wants to model that glucose is present in the environment
and that, therefore, the organism consumes it in order to obtain energy. The explicit
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form of the constraint of the exchange flux of glucose will be−10 ≤ ν
exchange
glucose ≤ ∞,

which means that the organism can expel as much as glucose as it wants but that it
can eat glucose with a maximum uptake of 10 mmol gDW−1 h−1.

Notice that nutrients have a negative lower bound and an unlimited upper bound,
whereas waste products have a value of the lower bound of 0 and unlimited upper
bound, which means that the organism cannot uptake it but, if the compound is
generated inside the organism, it can be expelled to the exterior as waste. As an
example, this would be the case for CO2 inE. coli, which is not eaten by the organism
but that is expelled due to respiration.

To summarize, an environment is simulated by choosing a set of nutrients and
assigning a lower bound −αi to each nutrient, which is the maximum uptake of
each nutrient, and assigning a lower bound of 0 to components not present in the
environment. For all external metabolites, the upper bound is set to ∞. Therefore,
for nutrients one has −α ≤ ν

exchange
nutrient ≤ ∞, whereas for waste products one has

0 ≤ ν
exchange
waste ≤ ∞. The rest of reactions are modelled as told in the previous

section.

2.2.2.1 Construction of Minimal Media

Aminimal medium is the minimal set of metabolites which ensure the viability of an
organism. The modelling of these media can be made as in Ref. [31]. Minimal media
consist of a set of mineral salts, and one source of carbon, of nitrogen, of sulphur and
of phosphorus, from four families representing carbon, nitrogen, phosphorus, and
sulphur compounds, respectively. To construct different minimal media, the set of
mineral salts is always the same—which contains, for example, magnesium sulphate,
iron chloride, and calcium chloride-, but each source family is browsed while the
other three sources are fixed to the standard metabolites of each kind (C*: glucose,
N*: ammonia, P*: phosphate, S*: sulphate) (see Table2.1).

Table 2.1 Examples of the construction ofminimalmedia.Asterisks denote the standardmetabolite
of each kind. To construct carbon media, the sources of nitrogen, phosphorus and sulphur are set to
the standard components of each kind whereas the carbon sources are varied. The same procedure
applies to construct nitrogen, phosphorus and sulphur media

Variation of carbon sources Variation of phosphorous sources

Medium 1 C1 N∗ P∗ S∗ Medium 1 C∗ N∗ P1 S∗

Medium 2 C2 N∗ P∗ S∗ Medium 2 C∗ N∗ P2 S∗

Medium 3 C3 N∗ P∗ S∗ Medium 3 C∗ N∗ P3 S∗

Variation of nitrogen sources Variation of sulphur sources

Medium 1 C∗ N1 P∗ S∗ Medium 1 C∗ N∗ P∗ S1
Medium 2 C∗ N2 P∗ S∗ Medium 2 C∗ N∗ P∗ S2
Medium 3 C∗ N3 P∗ S∗ Medium 3 C∗ N∗ P∗ S3
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2.2.2.2 Construction of Rich Media

Sometimes it can be useful to perform FBA computations in a medium with more
components that the ones present in a minimal medium. These media containing
more nutrients than a minimal medium are called rich media. One of this rich
media is an amino acid-enriched medium. This medium can be constructed from
a minimal medium with the standard metabolites explained in Sect. 2.2.2.1 (glucose,
ammonia, phosphate, and sulfate), by adding the following set of amino acids: d-
Alanine, l-Alanine, l-Arginine, l-Asparagine, l-Aspartate, d-Cysteine, l-Cysteine,
l-Glutamine, l-Glutamate, Glycine, l-Histidine, l-Homoserine, l-Isoleucine, l-l-
Leucine, l-Lysine, l-Methionine, l-Phenylalanine, l-Proline, d-Serine, l-Serine,
l-Threonine, l-Tryptophan, l-Tyrosine, l-Valine. This set of amino acids enriches
the minimal medium allowing the organism to take them as nutrients. Otherwise the
organism would have to synthesize them, resulting in a more stringent environment
for the organism. To simulate the presence of this set of amino acids in the medium,
the exchange constraints bounds of these amino acids are set to−10 mmol/(gDWh).

Another famous rich medium is called Luria-Bertani Broth [73]. The Luria-
Bertani Broth used in this thesis contains all the nutrients present in the amino
acid-enriched medium, but it contains as additional compounds purines and pyrim-
idines, vitamins (namely biotin, pyridoxine, and thiamin), and also the nucleotide
nicotinamide monocleotide [74]. The exchange constraints bounds of these com-
pounds are usually set to −10 mmol/(gDW·h) (νexchange

compound ≥ −10) for E. coli.

2.2.3 Activity and Essentialify of Genes and Reactions

An important application of FBA is to compute the activity and essentiality of reac-
tions in a network. These concepts can be applied either to genes or reactions, since
a reaction is catalysed by an enzyme which at the same time is codified by a gene or
a set of genes. Both concepts will be analysed in Chap.4.

The concept of activity is quite simple. A reaction is said to be active when, given
an external environment, the chosen reaction carries a non-zero flux. The concept of
essentiality is more subtle. It refers to how a network, and thus the growth rate, is
affected when one reaction is forced to be non-operative through the knockout of a
reaction or of the corresponding gene.

To calculate the effect of the knockout of a reaction, the selected reaction is
removed from the network, which is equivalent to force the chosen reaction to have
a null flux. The new system is usually called a mutant. In terms of the notation used
before, this is modelled as νi = 0 with i the removed reaction and νi = 0 its flux.
Thus, a FBA problem with a reaction i constrained to be non-active is

maximize ν ′
g

subject to S · 	ν = 	0
and 	α ≤ 	ν ≤ 	β

νi = 0

http://dx.doi.org/10.1007/978-3-319-64000-6_4
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where ν ′
g denotes the growth rate of the mutant. As a consequence, the system can

respond in three different ways as compared to the non-perturbed case νg:

1. The growth rate is unaltered ν ′
g = νg.

2. The growth rate is decreased 0 < ν ′
g < νg, which means that the biomass forma-

tion of the organism is reduced but the organism is still alive at the expense of
losing some performance.

3. The growth rate takes a null value ν ′
g = 0, meaning that the performed knockout

is lethal for the organism. This is the signature of essentiality.

It has been shown that FBA predicts gene essentiality with an accuracy of 90% [29]
in E. coli under glucose aerobic conditions, which means that FBA is a reliable tool
to predict whether a knockout will be lethal or not in this particular condition.

2.2.4 Flux Variability Analysis

Sometimes it is useful to identify which are the minimum and maximum bounds
that each reaction can take independently of the growth optimality condition. In
this way, one can have an idea of the flux space for a particular environmental
condition, and in particular which reactions can have a non-zero flux in a given
environment, since some reactions may be active for low values of the growth rate
but the same reactions must have a zero flux in order to ensure growth optimality.
This may happen due to the fact that some reactions can compete with the growth
reaction by consuming metabolites needed to grow and therefore this would reduce
the flux through the biomass reaction. As a consequence, when one optimizes the
flux through the biomass reaction, all reactions whose activation competes with the
flux of the biomass reactionwill have a null value in order to assuremaximum growth
conditions.

In addition to identifying those reactions that can compete with the growth rate,
reactions whose minimum and maximum values are close indicate that they may be
important for the organism since those reactions are allowed only to have a low vari-
ability in their fluxes. To know the minimum and maximum flux values of a reaction,
one applies the technique called Flux Variability Analysis (FVA) [16, 17, 75].

In most applications of FVA, the biomass reaction is imposed to have a minimum
value νg ≥ νmin

g to ensure viability. Hence, one can consider that the limiting fluxes
correspond to states where the organism is alive, even if the growth rate is not the
maximum value that the organism can achieve. Using themathematical notation used
in Linear Programming computations, FVA for each flux of a metabolic reaction can
be written as follows

minimize νi
subject to S · 	ν = 0

	α ≤ 	ν ≤ 	β
νg ≥ νmin

g

maximize νi
subject to S · 	ν = 0

	α ≤ 	ν ≤ 	β
νg ≥ νmin

g
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However, itmayhappen that one is interested in capturing all the possible scenarios
independently of the value of the flux of the biomass reaction, since in this way non-
optimal/low-growth scenarios can be taken also into account. Therefore, FVA can
be modified to compute the minimum and maximum possible values of the flux of
each reaction regardless of the value of the biomass formation rate. To this end, the
value of the flux of the biomass reaction is not constrained and any positive value is
allowed, νg ≥ 0. Under this condition, one will obtain the maximal set of reactions
that can be active in the considered medium independently of the rate of biomass
formation. This variation of FVA [76, 77] will be used in Chaps. 4 and 5. Using the
previous notation, this version of FVA, which we call Biomass unconstrained Flux
Variability Analysis, can be written as

minimize νi
subject to S · 	ν = 0

	α ≤ 	ν ≤ 	β
νg ≥ 0

maximize νi
subject to S · 	ν = 0

	α ≤ 	ν ≤ 	β
νg ≥ 0

2.3 Model Organisms

Information about metabolism of specific organisms [31, 33, 34, 78–85]—most sin-
gle cell—are gathered in databases, like the BiGG database [86], Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [87], BioCyc/EcoCyc/MetaCyc [88], BRENDA
[89], etc. The BiGG database deserves special attention in this thesis, since it has
been extensively used as it contains full reconstructions of metabolic networks for
specific organisms including all the biochemical reactions and the biomass formation
function in order to compute FBA solutions for different organisms.

The BiGG database provides high-quality curated information. Network recon-
structions coming from this database are structured in compartments like cytosol
inside cells or periplasm—the space bordered by the inner and the outer membranes
in Gram-negative bacteria. Therefore, metabolites present in different compartments
of the organisms are treated as different nodes. Using different compartments allows
the inclusion of transport systems in both the inner and outer membrane and thus the
metabolic machinery of organisms is more accurately represented. As an example,
water in the periplasmwill be a different metabolite thanwater in the cytosol. In addi-
tion, a directed bipartite representation of the metabolic network can be constructed
since in the databases reactants, products, reversible, and irreversible reactions are
distinguished. Further, the BiGG database specifies which enzyme catalyses each
reaction and also which gene or set of genes codifies each enzyme. However, reac-
tions are also listed which have neither associated enzymes nor genes. It may be
that, for these particular reactions, enzymes have not been identified yet or that some
reactions are spontaneous and they can take place without the need of an enzyme.

http://dx.doi.org/10.1007/978-3-319-64000-6_4
http://dx.doi.org/10.1007/978-3-319-64000-6_5
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It is important to notice that there exist different versions for each metabolic
network of each organism. This happens due to the fact that the reconstructions of
metabolic networks are constantly improved and, therefore, versions are constantly
updated. As an example, the first version of E. coli [90] contained 660 genes, 627
reactions, and 438 metabolites, while the last version of E. coli [31] contains 1366
genes, 2250 reactions, and 1805 metabolites.

2.3.1 Escherichia coli

Escherichia coli, abbreviated as E. coli, is the most studied prokaryotic organism and
it is the bacterial model that is most frequently used in experiments due to the ease
of its manipulation. More precisely, the strain studied in this thesis is K-12MG1655.
This strain colonizes the lower gut of animals. Moreover, it has been maintained as
a laboratory strain with minimal genetic manipulation.

Three versions of this strain have been used in this thesis. The first one is iAF1260,
which can be obtained either fromRef. [29] or directly from the BiGG database. This
version is based on an earlier reconstruction called iJR904 [91], on the annotation of
the genome of E. coli fromRef. [92], on contents from the EcoCyc (anE. coli version
of BioCyc) database [93] and on specific biochemical characterization studies from
Ref. [29]. The iAF1260 version contains 2077 reactions, 1669 metabolites, and 1260
genes [29] (see Table2.2). Metabolites are located in three compartments: exterior,
periplasm and cytosol. Notice that although the exterior is not a real compartment,
it is treated in this way in order to be able to use the exchange reactions explained
before.

The most recent version of E. coli is iJO1366 [31]. It is an update of the iAF1260
version. EcoCyc [94] and the KEGG database [95] were used in order to improve
the iAF1260 version, in addition to experimental techniques [31]. It contains 2250
biochemical reactions, 1805 metabolites, and 1366 genes [31] (see Table2.2). Like
in iAF1260, metabolites are located in cytosol, periplasm and exterior.

A simplified version called core E. coli metabolic model is also used, which can
be obtained either fromRefs. [12, 30] or the BiGG database. It is a condensed version
of the genome-scale metabolic reconstruction iAF1260 that contains 73 metabolic
reactions in central metabolism, 72 metabolites, and 136 genes (see Table2.2). This
network is complementedwith a biomass formation reaction and anATPmaintenance
reaction.

2.3.2 Mycoplasma Pneumoniae

Mycoplasma pneumoniae, abbreviated as M. pneumoniae, is a human pathogen of
primary atypical pneumonia that has recently been proposed as a genome-reduced
model organism for bacterial and archaeal systems biology [32, 33, 96, 97]. Interest
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in this organism has grown recently since it lacksmany anabolic processes and rescue
pathways compared to more complex organisms. This in turn translates into a highly
linear metabolism singularly suited to study basic metabolic functions [33]. This
property will be again mentioned in Chaps. 3 and 4.

Thefirst version of themetabolic network ofM.pneumoniaeused in this thesiswas
published in Ref. [32], where the authors integrated biochemical and computational
studies, complementing the information using the KeGG database. Its metabolic
reconstruction contains 187 reactions taking place in cytosol and in exterior, the
number of metabolites is 228, and the number of genes is 140 (see Table2.2).

The iJW145 version ofM. pneumoniae is the last update [33]. This network was
constructed by determining the behavior of the organism under different nutrition
conditions, using literature information and experimental data. It contains 240 bio-
chemical reactions, 266 metabolites, and 145 genes (see Table2.2). Metabolites can
be located in cytosol and exterior.

2.3.3 Staphylococcus aureus

Staphylococcus aureus, abbreviated as S. aureus, is found in the human respiratory
tract and on the skin. It is an anaerobic bacterium which is present world-wide, and
it is a common cause of skin infections, respiratory disease, and food poisoning.
The strain used in this thesis is N315, a major pathogen which is able to acquire
antibiotic-resistance [98].

The iSB619 version of S. aureus can be obtained either from the BiGG database
or from Ref. [34]. To construct this model, the authors used the KeGG database
and the Comprehensive Microbial Resource (CMR) at The Institute for Genomic
Research (TIGR) website [99]. Missing functions were annotated based on reported
evidence from this organism, as well as for Bacillus subtilis and E. coli. The number
of reactions is 642 and the number of metabolites is 644 (see Table2.2). Like in
M. pneumoniae, there are only cytosol and exterior compartments.

Table 2.2 Summary of the properties of all metabolic reconstructions used in this thesis. NR ,
NM , and NG stand for the number of reactions, metabolites, and metabolic genes respectively.
Metabolites in different compartments are treated as different metabolites

Organism NR NM NG Source

E. coli iAF1260 2077 1669 1260 Ref. [29], BiGG

E. coli iJO1366 2250 1805 1366 Ref. [31]

E. coli core model 73 72 136 Refs. [12, 30], BiGG

M. pneumoniae 187 228 140 Ref. [32]

M. pneumoniae iJW145 240 266 145 Ref. [33]

S. aureus iSB619 642 644 619 Ref. [34], BiGG

http://dx.doi.org/10.1007/978-3-319-64000-6_3
http://dx.doi.org/10.1007/978-3-319-64000-6_4
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Chapter 3
Structural Knockout Cascades in Metabolic
Networks

This chapter presents the analysis of the response of metabolic networks of model organisms
to different forms of structural stress, including removals of individual and pairs of reac-
tions and knockouts of single or co-expressed genes. Local metabolite motifs can be used
as predictors of failure cascade sizes caused by individual failures, and for amplification
effects in cascades caused by multiple failures. Correlation between gene essentiality and
damages produced by single gene knockouts is detected, which points out that genes con-
trolling high-damage reactions tend to be expressed independently of each other. This study
is carried out for three characteristic organisms:Mycoplasma pneumoniae, Escherichia coli,
and Staphylococcus aureus.

The architecture of complex networks is imprinted with universal features that affect
their resilience and condition their behaviour [1–3]. Most relevant, the scale-free
connectivity (see Chap. 2, Sect. 2.1.2) of many natural and man-made networks
explains their fragility in front of attacks to the most connected nodes, while they are
able to deal with accidental failures of single components [4, 5]. A manifestation of
this fragile yet robust nature of complex networks is that the failure cascade triggered
by a local shock rarely propagates to the whole system [6–9]. At the same time, it is
worth to remember that network studies have mainly focused on single node failures,
and that systemic responses to more globalized forms of structural and functional
stress still remain to be explored.

In a more biological context, metabolic networks are among the best probed in
terms of robustness in front of a variety of in silico perturbation experiments. They
have been found to comply with the design principles of error-tolerant scale-free
networks [10], and recent progress in network dynamics is also starting to portray
the concept of stress-induced network rearrangements [11, 12]. The exploration of
single biochemical reaction inactivations has shown that when a reaction is forced
to be non-operative, a cascade of consequent failures propagates to a variable extent
trough the whole network, and that the structural organization of metabolic networks
reduce the likelihood of large damaging cascades [13]. At the same time, many
individual mutations affecting enzyme-coding genes seem to have very little effect
on cell growth [14, 15]. By contrast, the impact of multiple failures could go beyond
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the mere accumulation of individual effects, producing amplified damage due to
peculiar biochemical interweaving or gene epistatic interactions [16].

The analysis presented in this chapter considers the removal of single and pairs
of biochemical reactions and the knockout of individual genes and clusters of
co-expressed genes in three bacteria, Mycoplasma pneumoniae, Escherichia coli,
and Staphylococcus aureus. To simulate the effect of reaction knockouts, a cas-
cading failure algorithm [13] is used and the significance of the obtained results
is assessed using two different null models called degree-preserving randomiza-
tion (DP) (see Chap. 2, Sect. 2.1.7.1) and mass-balanced randomization (MB) (see
Chap. 2, Sect. 2.1.7.2). One finds that, for the three organisms, the sizes of cascade
distributions span a broad range of values, with many short propagations but a few
that spread at the systems level. M. pneumoniae exhibits similar network responses
to E. coli and S. aureus, although its increased linearity and reduced redundancy [17]
threaten its robustness against individual reaction removals. For all three organisms,
the impact of failure cascades can be predicted in terms of local network motifs. In
this way, targets prone to introduce structural vulnerability can be readily detected
prior to experimental testing without expensive computations, even for large and
complex organisms. This chapter also reports the effects of single and multiple gene
knockouts in M. pneumoniae by coupling, through enzyme activity, its metabolic
network to the experimentally measured gene co-expression network. One observes
that genes related to high-damage reactions are essential for the organism and that
their expression tends to be isolated from that of other genes. This hints at the inter-
play between metabolism and genome, apparently evolved to favour the robustness
of this organism by avoiding the potentially catastrophic effect of coupling the co-
expression of structurally vulnerable metabolic genes. At the same time, one finds
that this enables the organisms the ability to performmore efficient metabolic regula-
tion at the expense of losing some of the maximum attainable robustness determined
by physico-chemical constraints.

The contents of this chapter correspond to Ref. [18], to Ref. [19] Copyright @
2012, PACIS-JCIS (reproduced with kind permission from PACIS-JCIS), and to
Ref. [20].

3.1 Cascading Failure Algorithm

It is important to start by explaining how the cascading failure algorithm works after
a reaction or a set of them are inactivated. First of all, the metabolic networks of
M. pneumoniae, E. coli (iAF1260), and S. aureus (iSB619) (see Chap. 2, Sect. 2.3)
are modelled as a bipartite semidirected network (see Chap. 2, Sect. 2.1.1), with two
specific criteria:

1. All biochemical reactions in the genome-scale metabolic reconstructions
(GENREs) are considered except exchange, sink, biomass formation, and ATP
maintenance reactions.

http://dx.doi.org/10.1007/978-3-319-64000-6_2
http://dx.doi.org/10.1007/978-3-319-64000-6_2
http://dx.doi.org/10.1007/978-3-319-64000-6_2
http://dx.doi.org/10.1007/978-3-319-64000-6_2
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2. All metabolites involved in the reactions included in the network representation
are considered. In particular, hubs participating in a huge number of reactions
are not excluded. Hubs stay neutral with respect to structural cascades and do
not contribute to propagate them. Due to their large number of connections, they
are highly unlikely to become non-viable as a consequence of single or double
cascades reaching them.

The cascading failure algorithm [13] is based on the states of the nodes on the
network, i.e., nodes can be viable or non-viable. Non-viable nodes spread the pertur-
bation, whereas viable do not. To define viability, two aspects are considered since
a bipartite representation of the metabolic network is used. The first one refers to
metabolites, and consists on the fact that each viable metabolite must have at least
one outgoing and one incoming connections so as to prevent accumulation or deple-
tion of the metabolite. For reactions, the criterion is that all metabolites participating
in a reaction must be viable.

The algorithm works by removing one or more reactions, and then checking the
viability of its surrounding metabolites. If they are viable, the cascade stops, other-
wise the cascade is spread into other reactions and metabolites until all remaining
nodes satisfy the mentioned criteria (see Fig. 3.1). When the cascade stops, the cor-
responding damage is quantified as the number of reactions turned non-operational.

Reversible reactions (see Chap.1, Sect. 1.1.2) deserve a special treatment in this
algorithm. They are decoupled in two half-nodes, the forward and the reverse direc-
tion. A cascade propagating to a metabolite of a reversible reaction fixes it in the
forward or reverse direction depending on whether the single incoming or outgoing
link left to the affected metabolite is connected to the forward or reverse half of
the reaction (see Fig. 3.1, step 3). In all cases, when any metabolite of a reversible
reaction has this reaction as the single one producing and consuming it, the reaction
must be removed to satisfy the viability criterion.

3.2 Impact of Reaction Failures

This first result is the distribution of damages for cascades triggered by individual
and by pairs of reactions in the metabolic networks of M. pneumoniae, E. coli, and
S. aureus. Later, local network motifs responsible for the propagation of cascades
are identified, and a local predictor for damage is proposed.

3.2.1 Impact of Individual Reactions Failures

Although close to 50% of all individual reaction failures in the three organisms con-
sidered do propagate cascades, most cascades are indeed small (59% of the cascades
inM. pneumoniae, 38% in S. aureus, and 55% in E. coli propagate to only one or two

http://dx.doi.org/10.1007/978-3-319-64000-6_1
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Fig. 3.1 Example of how the cascading failure algorithm is applied to a metabolic network. (1) For
clarity, metabolites 4 and 5 are labelled with R and 7 and 8 with P depending on whether they are
reactants or products of the reversible reaction denoted d (for simplicity, only a reversible reaction
is considered in this illustration, the rest being assumed to be irreversible). The cascade starts
when reaction c fails. (2) Therefore, metabolites 3 and 6 become non-viable. Because metabolite
6 is connected to reaction g, the later becomes non-viable, turning also metabolite 12 non-viable.
Notice that metabolite 11 loses one IN connection, but it is still viable, meaning that one of the
waves of the cascade stops here. However the other wave keeps spreading. (3) Metabolite 4 causes
the reversible reaction d to remain viable only towards the production of metabolites 7 and 8. (4)
Consequently, metabolite 4 becomes non-viable, and so its associated reactions also become non-
viable. (5) The cascade spreads until all metabolites and reactions affected by the cascade remain
viable. Finally, note thatmetabolites 1, 2, 3, 13, and 14, which initially have no incoming or outgoing
connections, are not considered non-viable by the algorithm. Extracted from Ref. [19] Copyright
@ 2012, PACIS-JCIS
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Fig. 3.2 Damage in cascades triggered by individual reactions. a–c Cumulative probability dis-
tribution functions of damages in M. pneumoniae, E. coli, and S. aureus. Results are compared
with damages produced in DP randomized versions of the metabolic networks in order to discount
structural effects. In each case, the solid black curve is the average over 100 realizations. Results
for S. aureus and an older version of E. coli were already presented in Ref. [13]. The results of the
Kolmogorov-Smirnov tests are given in terms of the K-S statistic and its associated significance
level (K-S statistic/associated significance level) (see Appendix A): 0.095/0.07, 0.086/0.0002, and
0.079/1.4 ·10−11 for M. pneumoniae, S. aureus, and E. coli respectively. With a significance value
of α = 0.05, distributions of damages can be considered not consistent with those for randomized
variants, except for M. pneumoniae. d Spearman’s rank correlation coefficient ρS between pre-
dictors and damages, plotted against metabolic network size (number of reactions R). Results are
compared to random reshuffling of the predictor value associated to reactions (100 realizations for
each organism). Average Spearman’s rank correlation coefficients for the randomizations appear
in black, and error bars delimit the maximum and the minimum values obtained. Extracted from
Ref. [18]

reactions). However, the removal of some particular reactions may trigger relatively
far reaching damages. This is shown in Fig. 3.2a–c, that display the cumulative prob-
ability distributions P(d ′

r ≥ dr ) that the failure of a reaction r attains at least dr − 1
other reactions in each metabolic network. All species show similar broad distrib-
utions, although the crossover in the tail of the distribution from power-law-like to
exponential-like is not evident in M. pneumoniae probably due to its limited redun-
dancy. In order to assess the significance of cascades, the computed distributions
are compared with those corresponding to DP randomized variants of the metabolic
networks taken as null models (see Chap. 2, Sect. 2.1.7.1).

http://dx.doi.org/10.1007/978-3-319-64000-6_2
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To check consistency, Kolmogorov-Smirnov (K-S) tests [21] (see Appendix A)
are performed measuring the maximum absolute difference between the null model
and the empirical distributions (see caption of Fig. 3.2 for specific values). This differ-
ence is transformed into a significance level directly compared to a chosen threshold,
typically α = 0.05. If the significance associated to the K-S test statistic is equal
or smaller than α, the compared distributions cannot be considered consistent. Both
E. coli and S. aureus display values much below the threshold, meaning that the
empirical distributions are not determined just by the connectivity imposed by the
degrees of metabolites. Comparing both distributions, the metabolic organization of
the organisms appears to have evolved towards reducing the likelihood of large fail-
ure cascades (probably lethal for the organisms) or, equivalently, towards increased
structural robustness, as previously seen for S. aureus and for an older version of
the metabolic network of E. coli in [13]. In contrast, the value of the associated
significance level for M. pneumoniae is very similar to the threshold. As a conse-
quence, one cannot say that the difference between cascade size distributions in the
original network and in the randomized counterparts is statistically significant, even
though the probability for large cascades is still smaller in the original metabolic
network. This can be explained by the increased linearity and limited redundancy of
M. pneumoniae metabolic network structure, according to available data [17].

Along with structure, biochemical insight contributes to explain why some reac-
tions trigger larger cascades. ForM. pneumoniae, the most vulnerable reactions can
be classified into four groups related to vital functions. One group is associated
to metabolites phosphoenolpyruvate and protein L-histidine, each solely produced
by one generating reaction and both of them directly related to phosphorylation
processes, vital for instance in the synthesis of ATP. The second group relates to
formate, which has a prominent role in the energy metabolism on many bacteria.
The third group involves reactions where the important metabolite is thioredoxin, an
antioxidant protein essential to reduce oxidized metabolites, along NADP+. Finally,
the failure of reactions in the fourth group trigger large cascades that affect the
synthesis of fatty acids by turning acyl carrier proteins non-viable.

Prediction of the size of the cascades is possible by looking to the local information
corresponding to the triggering reaction. An expression for the predictor Pr for
the damage spreading from the triggering reaction r which is surrounded by m
metabolites is:

Pr =
∑

m∈r

[
(ki + kb)δ

0
ko(δ

1
kb + δ0kb)(δ

1
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) (3.1)
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Degrees ki , ko and kb refer respectively to the number of incoming, outgoing and
bidirectional links of metabolite m (reactant or product) associated to the triggering
reaction r after discounting the links used to propagate the cascade, and k ′

i , k
′
o and
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Fig. 3.3 Examples of application of Eq.3.1 to several configurations of metabolites and reactions.
Triggering reactions are coloured yellow,whereasmetaboliteswhich spread the cascade are coloured
red. For clarity, the contribution of each metabolite to the value of Pr is also given. Extracted from
Ref. [18] (color figure online)

k ′
b denote the original values before the cascade is triggered. δba are used for the
Kronecker’s delta function.Basically, this predictor identifiesmetabolites susceptible
to propagate the cascade, which are those having originally just one IN or just one
OUT link, which is the one connecting them to the triggering reaction, or those
connected to the triggering reaction by a bidirectional link and lacking in or out
connections. The contribution to the predictor of one of those metabolites counts
the number of connections of this metabolite with the rest of reactions, which can
then be considered susceptible to become non-viable and propagate the cascade (see
Fig. 3.3 for illustrations showing how the measure works for some particular cases).

Propagator motifs are represented by branched metabolites with just one in or
out connection that happens to be attached to the triggering reaction. The higher the
branching ratio of these metabolites, the higher the likelihood that the reaction prop-
agates a large cascade, and thus to become a target for structural vulnerability in the
network. To give an example, the two most vulnerable reactions in M. pneumoniae
produce phosphoenolpyruvate, a compound involved in Glycolysis and Gluconeo-
genesis that acts as a source of energy. It happens to be a highly-branched cascade
propagator motif connected to two reversible reactions and, as a product, to eight
irreversible reactions (see Fig. 3.4 for a categorization of cascade propagator motifs
in bipartite networks).
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Fig. 3.4 Motifs of cascade propagation after failure of individual reactions. Cases a–j result into
cascades with dr larger than 1, while cases k–p correspond to potential transmitters in the sense
that they may or may not spread the cascade. Extracted from Ref. [18]

To check the predictive power of our predictor Pr , Spearman’s rank correlation
coefficient ρS between predictors and damages are measured for each organism
(see Appendix B). Basically, Spearman’s correlation [22] is the Pearson correlation
coefficient between two ranks, here given by the positions in ordered lists of reactions
according to predictor values Pr and damages dr . A high ranking position by predictor
value is expected to correlate with vulnerable reactions at the top of the damage
ranking. For all three organisms, very high values of the correlation coefficient are
found, which are statistically significant (see Fig. 3.2d). This evidences the ability
of this predictor, calculated on the basis of local information, to rank reactions by
damage without directly computing the effect of the failure.

3.2.2 Non-linear Effects Triggered by Pairs of Reactions
Cascades

As expected, the simultaneous failure of two reactions leads to higher damages
compared to single reaction failures as shown in Fig. 3.5. The graphs display the
cumulative probability distributions P(d ′

rr ′ ≥ drr ′) calculated from all possible pairs
of reactions initiating the cascades. It is worth stressing that the order of initiation is
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Fig. 3.5 Damage in cascades triggered by pairs of reactions. a–c Cumulative probability distrib-
ution functions of damages in M. pneumoniae, E. coli, and S. aureus. Results are compared with
damages produced in DP randomized versions of the metabolic networks in order to discount
structural effects. In each case, the solid black curve is the average over 100 realizations. Results
of the Kolmogorov-Smirnov tests (K-S statistic/associated significance level) (see Appendix A):
0.15/0, 0.14/0, and 0.13/0 forM. pneumoniae, S. aureus, and E. coli respectively. Taking α = 0.05,
distributions of damages can be considered not consistent with those for randomized variants. d
Most frequent double cascades output. Solid line interference without amplification. It is related
with cases b and c in Fig. 3.6. Dashed line no interference, which is related with case a in Fig. 3.6.
eNon-linear effects in double cascades. Solid line overlap. It is related with cases c and e in Fig. 3.6.
Dashed line amplification. Amplification is related with cases d and e in Fig. 3.6. Extracted from
Ref. [18]

irrelevant. Notice that the exponential cut-off is still present, and becomes prominent
even for M. pneumoniae. Again, metabolic robustness is assessed by comparing
cascades in the original networks with those in DP randomized counterparts using
K-S tests (see caption of Fig. 3.5 for specific values). One finds that, for all three
organisms including M. pneumoniae, the probability for large cascades triggered
by pairs of reactions is significantly smaller in the original metabolic networks as
compared to those in the randomized variants, suggesting that the organization of
metabolic networks has evolved towards protecting metabolism against multiple
reaction failures.

It can also be observed that cascades caused by individual reactions combine in
different ways when two reactions fail simultaneously (see Fig. 3.6). The crucial
concept here is that of the pattern of interference of the respective areas of influence
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Fig. 3.6 Cascade propagator network motifs and typology of double cascades. a–e Illustration of
possible interference patterns between individual cascades: additive, interference without overlap
or amplification, interference with overlap and without amplification, interference without overlap
and with amplification, interference with overlap and amplification, respectively. Blue and yellow
stand for single cascades, green for interference, and red for overlap and amplification, depending
on whether the red zone is in the interference zone (green) or not. f–kMetabolic network motifs in
the interference of two individual cascades that induce amplification. Cases f–g Motif caused by a
metabolite which loses its only generating reaction and at the same time it is the reactant of several
reactions. These reactions are going to be become non-viable. Case g is equivalent to f but inverting
the sense of the links. Case h Metabolite which has been left with one connection to a reversible
reaction. This reversible reaction has zero net flux and becomes non-viable. Cases i and j This motif
appears when a modified metabolite is lead with only one incoming connection coming from a
reversible direction. This fixes the reversible reaction towards the production of this metabolite. If
this step turns a metabolite of the reversible reaction non-viable, the reversible reaction becomes
non-viable. Therefore, this motif is a potential trigger of amplification. Case j is equivalent to case
i when the senses of the reactions are inverted. Case k The individual cascades fix the sense of a
reversible reaction oppositely, one cascade forwards (k top) and the other backwards (k bottom)
(note that the pictures illustrate the effects of both cascades individually). After superimposing the
effects of the two cascades, one can see that this reversible reaction becomes non-viable. Thus,
metabolites surrounding the reaction may become non-viable as well, depending on their degrees.
It is also a potential trigger, as in cases i and j. Extracted from Ref. [18]

of the two individually considered cascades. By that, one refers to all metabolites and
reactions altered,1 removed or not, by each single cascade. If there is no interference,

1Reactions altered but not removed are reversible reactions that become directed by effect of the
cascade.
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the total damage drr ′ is additive and equal to the sum of the two single damages dr
and dr ′ . Otherwise, different situations are possible leading to a combined damage
that can be equal, larger or smaller than the single added values. The latter case
is a univocal signature of cascade overlapping orr ′ , pointing to the existence of a
common subset of reactions that fail in both cascades (the most extreme realization
is when one cascade is totally contained in the other).More interesting is the situation
when, irrespectively of the presence or absence of overlap, a non-linearly amplified
damage is detected, involving a number arr ′ of new reactions that break down under
simultaneous black outs. For all cascades,

drr ′ = dr + dr ′ − orr ′ + arr ′ (3.2)

Interference without amplification is the most common situation, followed by the
absence of interference (see Fig. 3.5d). In contrast, overlap and amplification happen
for a very small fraction of all double cascades, and their occurrence decreases
with the size of the organism (see Fig. 3.5e). In particular, the reduced incidence of
amplification represents a new signature that organizational principles at play ensure
the robustness of the organisms, despite increasing complexity and interweaving.

However, amplificationmay have a very large impact when it occurs. For instance,
pyruvate (a product of glucosemetabolism and a key intersection in severalmetabolic
pathways) provides energy by fermentation. This process reduces pyruvate into lac-
tate, a reaction that does not trigger any black out cascade when it fails, so dr = 1.
At the same time, pyruvate can also be decarboxylated to produce acetyl groups, the
building blocks of a large number of molecules that are synthesized in cells. The
failure of the first reaction in such pathway triggers a cascade of length dr ′ = 3.
In contrast, the simultaneous failure of both the fermentation and the reduction of
pyruvate induces a large cascade of size drr ′ = 36, most likely lethal. As a biologi-
cal explanation, one could argue that both processes are strongly interdependent to
maintain the oxidation-reduction balance when fermentation is in action.

Collateral effects offer the clue to understand this amplification phenomenon. In
parallel to rendering non-operational some reactions and their correspondingmetabo-
lites, a cascade can reduce the connectivity and increase the branching ratio of other
viable metabolites in its influence area. When stricken by the propagation front of
a second cascade, these metabolites are susceptible of becoming non-viable, further
spreading the failure wave. In this way, interference is a necessary but not a suffi-
cient condition for amplification, and a large amplification can be possible evenwhen
there is no overlap and the interference between the individual cascades is small. To
predict which pairs will trigger amplification, one must focus on metabolites in the
interference of the influence areas of the two individual cascades. Those metabolites
that remain viable after each individual cascade but become non-viable when the two
effects are superposed will produce amplification, propagating the double cascade
to new reactions. In Fig. 3.6f–k, the connectivity structure of all interference cascade
propagator motifs responsible for amplification is provided.
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3.3 Impact of Gene Knockouts in Metabolic Structure

Reaction failures are usually associated to the disruption of an enzyme due to knock-
out, inhibition, or deleteriousmutation of the corresponding gene. InM. pneumoniae,
enzyme multi-functionality and gene essentiality are higher as compared to other
prokaryotic bacteria, so gene malfunctioning can potentially produce an acuter stress
response at the level of metabolism. To address this issue, the metabolic network of
M. pneumoniae is coupled to its gene co-expression network through the activity of
enzymes, and knockouts of individual genes and clusters of co-expressed genes are
performed. Inherent to this analysis is the potential occurrence of individual, double,
ormultiple cascades simultaneously.Multiple knockouts are algorithmically handled
as an obvious extension of the previously considered situation of pair cascades.

The genome of M. pneumoniae [23] comprises 688 genes, 140 of which have
a metabolic function. Except for one spontaneous reaction and 20 reactions with
unknown regulation, these metabolic genes codify 142 enzymes that catalyse reac-
tions in the metabolic network of this organism.

3.3.1 Metabolic Effects of Individual Mutations

Individual metabolic gene knockouts or mutations inhibit the production of catalytic
enzymes and induce black outs of reactions propagating in the metabolic network
as a failure cascade (see Fig. 3.7). From existing data, 71% of the 140 metabolic
genes in M. pneumoniae have a one-to-one relation with reactions, and 21% of the
genes regulate multiple reactions. Seldom the same reaction may be individually
regulated by different enzymes produced by different genes, which happens for only
four non-damaging reactions. More often, several genes are necessary to regulate
the activity of a single reaction through an enzymatic complex. Twelve complexes
codified by 26% of genes regulate the activity of 10% of metabolic reactions in
M. pneumoniae. The removal of any of the genes involved in a complex is expected
to cause the inactivation of the reaction controlled by the complex, which in principle
may increase vulnerability. However, it can be observed that almost all complexes
are associated to low damage reactions, which indicates a certain degree of structural
robustness.

To study the metabolic effects of individual gene mutations, the knockout of all
reactions associated to the gene under consideration are simulated. As explained,
most often this corresponds to one single reaction but sometimes multiple reactions
are removed simultaneously. The first observation is that metabolic genes affecting
vulnerable reactions trigger large failure cascades. More interestingly, genes with
large associated damages in metabolism turn out to be essential or conditionally
essential forM.pneumoniae (seeTable3.1),with a unique exception discussed below.
The classification given in Ref. [17] is used, where essentiality is defined according
to the measuredmetabolic map and the definition of a minimal mediumwhich allows
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Fig. 3.7 Left Scheme of genes connected to reactions. Direct connections between genes and
reactions are shown, but notice that connections between genes and reactions can be done only due
to the existence of enzymes. Right effect of how performing a knockout of a gene, labelled as g8,
spreads a cascade in the metabolic network. Squares denote reactions, circles denote metabolites
and triangles genes. Black nodes denote nodes that have become non-operational, whereas gray
nodes are viable nodes that have reduced their connectivity due to the effect of the cascade. Parts
of this Figure have been extracted from Ref. [24] Copyright @ 2014, World Scientific Publishing

M. pneumoniae to grow. Essential genes are those that are required for the survival
of the organism, meaning that the products of the reactions that they control are
essential for life and cannot be produced by alternative pathways, while conditional
means that essentiality depends on the media composition available.

In fact, all conditionally essential genes with the potential of producing high
damage in the metabolism of M. pneumoniae have been found to have an essential
orthologue (essentiality determined by loss-of-function experiments) inMycoplasma
genitalium [25], a comparable genome-reduced bacterium. The only exception to
essentiality in Table3.1 is gene MPN062, considered as non-essential in Ref. [17],
while in this study it triggers a large failure cascade and so it can be classified as a
vulnerable target for metabolic structure. Its damaging potential can be explained by
the fact that each of the four reactions controlled by the gene has a contribution that,
although not extremely high individually, adds to the total damage and interferes to
produce amplification. Therefore, MPN062 can be proposed as an important gene
for metabolic function in M. pneumoniae, a conjecture that is supported by the
essentiality of its orthologue in M. genitalium [25].

Another interesting case is essential gene MPN429, whose knockout triggers the
largest cascade inM. pneumoniae. Each of the four affected reactions in the Glycol-
ysis pathway is not able to propagate a cascade individually. However, when they
all are removed simultaneously, the strongest amplification effect is observed. The
biochemical explanation is that the non-linear interaction of the cascades stops the
production of phosphoenolpyruvate, which disrupts the synthesis of ATP, a circum-
stance particularly harming to the organism.

The obtained results of the study of structural cascades to predict gene essentiality
inM. pneumoniae is in agreement with the gene essentiality computed in Ref. [26].
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Table 3.1 Largest structural damages produced in metabolism by gene knockouts and correspon-
dence with gene essentiality as given in Ref. [23]. Damage in metabolic structure caused by gene
knockout (third column) is measured in number of deleted reactions. In the fourth column, the
number of reactions regulated by the corresponding gene is given, and in parentheses the damage
associated to each of these reactions is also given. Genes inmonocomponent clusters are highlighted
in boldface, and braces are used to denote genes that form complexes. Note that the complex at the
end of the list is not detected by any of the three clustering procedures. Finally, gene MPN062 is the
only one in the table annotated as non-essential although it is associated to a large failure cascade.
Extracted from Ref. [18]

Gene Essentiality Damage Reactions

MPN429 yes 49 4 (1,1,1,1)

MPN606 yes 32 1 (32)

MPN628 yes 32 1 (32)

MPN017 yes 25 3 (14,1,9)

MPN303 yes 18 8 (1,1,1,1,8,1,2,3)

MPN062 no 17 4 (6,3,2,3)

MPN576 cond 16 2 (13,2)

MPN005 yes 13 1 (13)

MPN336 yes 13 3 (4,3,6)

MPN354 yes 13 1 (13)

MPN627 yes 11 1(11)

MPN066 yes 9 4 (1,1,2,5)

MPN240 cond 9 1 (9)

MPN299 cond 9 1 (9)

MPN322
⎫
⎪⎬

⎪⎭

cond 9 4 (1,1,2,1)

MPN323 cond 9 4 (1,1,2,1)

MPN324 cond 9 4 (1,1,2,1)

MPN034
}

yes 7 4 (1,1,2,3)

MPN378 yes 7 4 (1,1,2,3)

3.3.2 Metabolic Effects of Knocking Out Gene
Co-expression Clusters

Groups of co-expressed genes inM. pneumoniae can be identified from gene expres-
sion data under different conditions [27–29],which reveals a complexgene regulatory
machinery [23]. The functional deactivation of these clusters might be produced by
the failure of common regulatory elements and important damage could be transmit-
ted to metabolism.

In this subsection, results on the effects on the metabolic structure of
M. pneumoniae by suppressing gene co-expression clusters are shown. Informa-
tion about gene expression is provided in Ref. [23]. Correlations in the expression
of genes were measured from tilling arrays under 62 different environmental con-
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Fig. 3.8 Pictures of co-expressed genes and distribution of sizes of gene clusters. Left Groups of
co-expressed clusters regulating a metabolic network. Right Distribution of sizes of the clusters
obtained using distance hierarchical clustering (blue), Infomap (red) and recursive percolation
(green). Parts of this figure have been extracted from Ref. [24] Copyright @ 2014, World Scientific
Publishing, and from Ref. [18]

ditions. This matrix of correlations between the expression levels of pairs of genes
gives a fully connected network where the link between two genes carries a weight
ranging from −1 to 1. This gene correlation matrix can be coupled to the metabolic
network of M. pneumoniae through the activity of enzymes to produce a multilevel
network representation.

To detect gene co-expression clusters, three different strategies -distance hierar-
chical clustering, Infomap, and recursive percolation (see Chap. 2, Sect. 2.1.4)- are
applied to the gene expression correlation matrix in order to discount biases intro-
duced by the specifications of the community detection method. The distributions of
sizes of the obtained clusters with the three strategies are shown in the right panel of
Fig. 3.8, where it is indeed possible to see a certain degree of similarity between the
distribution of sizes of the clusters obtained using the three different methods.

The comparative analysis of the detected clusters of genes showed that, although
the partitions found by each algorithm may differ in their composition and in the
maximum size of the clusters, there are preserved commonalities independently of
the method. One of them is that all methods are able to detect seven of the twelve
complexes, since the related genes always appear classified in the same cluster.
Another remark is that, as explained in the previous paragraph, the three detec-
tion methods result in qualitatively similar power-law-like cluster size distributions
(see Fig. 3.8, right), with most clusters having small size while some are relatively
big. Interestingly, genes related to high damage spreading reactions are secluded
into mono-component clusters. To be more precise, eight of the nineteen genes in
Table3.1 are recognized by all three methods as having an expression profile that
is not correlated to other gene activity levels. This is surprising since, in principle,
high-damage genes might be expected to be co-regulated with other genes, as influ-
encing big parts of metabolism usually requires coordinated gene activity. The fact
that these genes appear isolated pinpoints them as potentially important metabolic

http://dx.doi.org/10.1007/978-3-319-64000-6_2
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Fig. 3.9 Damages as a function of the number of metabolic genes and reaction failures in gene co-
expression cluster knockouts. Clusters are defined according to three differentmethods:Hierarchical
Clustering (HC), Infomap (I), and Recursive Percolation (RP). Results are compared with damages
produced in randomized versions of the metabolic networks in order to discount structural effects.
In each case, the solid black curve is the average over 100 realizations. Extracted from Ref. [18]

regulator targets, since the alteration of only one gene may affect a large number of
metabolic reactions. In any case, the lack of co-regulation of genes related to high
damage spreading reactions is again an indication that the structural organization of
the organism has evolved towards protecting the system against multiple failures.

Taking averages for equally sized clusters, it can be found that knockouts of co-
expression clusters produce a damage on metabolic structure that increases with the
number of affected metabolic genes, except when most metabolic genes in a clus-
ter codify an enzymatic complex regulating one reaction (see Fig.3.9, left panels).
The damage produced by the failure of the cluster also increases with the num-
ber of associated reactions (right panels in Fig. 3.9). In order to discount structural
effects, these results are comparedwith thosemeasuredonDP randomizedversions of
the metabolic network of the genome-reduced bacterium. As evidenced in Fig. 3.9,
all cluster detection methods identify clusters that produce lower damages in the
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real metabolic network of M. pneumoniae as compared to the randomized network.
This supports the idea that the regulatory machinery that controls the coupled-to-
metabolism co-expression of genes has evolved towards robustness.

Finally, since the three cluster detectionmethods propose different forms of aggre-
gating metabolic genes, it is relevant to consider whether cluster composition is
relevant for failure propagation. As a null model, one can consider randomization
restricted not to the network itself but to the specific gene metabolic composition,
while maintaining the total number of metabolic genes in each cluster. It can be
observed that such a reshuffling of metabolic genes in clusters has no relevant effect
on the damages measured on the metabolic network (see Fig. 3.10). This means
that, surprisingly, the composition of the clusters is not as statistically relevant for
metabolic vulnerability as the distribution of the cluster sizes itself. This feature,
together with the large detected amount of mono-component clusters, point out to
the existence of multiple levels of regulation, depending on experimental conditions
and, at the same time, explains why genes controlling high damage spreading reac-
tions operate preferentially under functional isolation as a metabolism protection
mechanism.

3.4 Robustness Versus Regulation in Metabolic Networks

The null model used in the first part of this chapter, called degree-preserving ran-
domization, does not account for the most basic physico-chemical constraints and
may lead, in the case of metabolic networks, to consideration of reactions which are
not mass (i.e., stoichiometrically) balanced (which do not preserve the same type
and number of atoms on the substrate and product sides). As a result, the randomized
networks may not be chemically feasible. As an alternative, the null model called
mass-balanced randomization [30] accounts for this issue (see Chap. 2, Sect. 2.1.7.2).
It is worth stressing that this method preserves the degrees of reactions but not the
degrees of metabolites (see Fig. 3.11).

In this section, cascades originated by single reaction and pair of reaction failures
in the original networks of the three bacteria are compared with those obtained from
two null models: DP, already used in the previous section, andMB randomization. As
in the first part, K-S tests are used to statistically assess whether the null models are
relevant to explain the resulting damage distributions in the original networks. The
analysis reinforces the importance of choosing an appropriate null model according
to the question at hand, since the null model ultimately affects the interpretation of
the findings [19].

First, cascades triggered by individual removal of reactions are studied, each cas-
cade having its associated damage dr . When comparing the cumulative distributions
P(d ′

r ≥ dr ) of the damage dr produced by individual removal of reactions between
the original and randomized networks (see Fig. 3.12, left panels), it can be observed
that the distributions of the original networks lie in between the distributions of the
two null models. To check whether or not the cumulative probability distributions

http://dx.doi.org/10.1007/978-3-319-64000-6_2
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Fig. 3.10 Damage distributions as a function of the number of genes and reaction failures, similar
to Fig. 3.9, but now randomizing the specific genetic contents of each cluster while maintaining
the total number of metabolic genes in each cluster. The size of the clusters are defined according
to three different methods: Hierarchical Clustering (HC), Infomap (I), and Recursive Percolation
(RP). Extracted from Ref. [18]

are significantly different in the original networks and in their randomized variants,
K-S tests are performed (see Table3.2), taking as the standard significance level
α = 0.05. The compared distributions are considered significantly different from
the null models because their associated significance is smaller than 0.05, except for
M. pneumoniae, whose distribution can be considered consistent with the DP model
as seen in Sect. 3.2, probably due to its linearity. Both for E. coli and S. aureus,
damages are smaller compared to their DP randomizations but larger when com-
pared to their MB randomizations. Thus, the robustness of the analysed networks
cannot be explained by the distribution of degrees or by basic physical constraints.
For the DP null model, this finding indicates that robustness is positively influenced
by factors other than the degrees. The results from the MB null model suggest that,
for all three organisms, evolutionary pressure leads to larger cascades of non-viable
reactions as compared to those imposed by physico-chemical constraints, and thus
lower robustness.
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After performing single reaction removals, the same analysis for the removal
of each possible pair of reactions is done. Similar to the single reaction case, the
cumulative probability distributions P(d ′

rr ′ ≥ drr ′) of the damage drr ′ resulting
from the knockout of two reactions is determined (see Fig. 3.12). K-S tests with
a standard significance level α = 0.05 are again applied (see Table3.2), finding that
the distributions of the original networks are significantly different from those of
both randomization methods. All organisms display in this case similar results, the
distributions of the original networks lie again between the distributions of the two
null models, and all of them can be considered inconsistent with both null models.
Consequently, the observations for individual failures also hold for the failure of
reaction pairs: robustness is positively influenced by factors other than degrees, but
negatively influenced by evolutionary pressure.

The cascade algorithm produces larger damages in the original networks as com-
pared to those in MB randomized networks, but smaller cascades as compared to
those in DP randomized counterparts. A possible explanation is offered by the dif-
ference in global properties of the networks obtained from the two randomization
methods [31]. DP randomization decreases the average path length and increases the
clustering coefficient of the randomized network, increasing its small-world property.
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Fig. 3.12 Distributions of damage caused by removal of reactions. a, c, e Cumulative probability
distributions forM. pneumoniae (blue), S. aureus (green), and E. coli (red). Averaged distributions
over 100 randomizations of the original networks are shown for DP (dashed line) and MB random-
ization (continuous line). b, d, f Damages caused by pairs of removal of reactions. Parts of this
Figure have been extracted from Ref. [19] Copyright @ 2012, PACIS-JCIS (color figure online)

Consequently, such networks are more interconnected and, thus, a cascade may in
principle propagate further in the network. The opposite holds forMB randomization,
which increases the average path length while decreasing the clustering coefficient
of the randomized network so that the spread of the damage is less likely. Although
the average path length does not resemble the length of metabolic inter-conversion,
the small-world property may still affect the impact of removal of reactions due to
its functional importance.

It can also be pointed out that the principle of cascade propagation relies on
violation of a structural precondition for a steady-state, namely that all metabolites
can be produced and consumed in order to avoid their depletion or accumulation.
However, the steady-state assumption is only meaningful for networks which satisfy
fundamental physical principles. Therefore, the use of MB randomization, which
guarantees preservation of mass balance, allows to discern whether the measured
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Table 3.2 Kolmogorov-Smirnov tests for comparing single reaction (SR) and pairs of reactions
(PR) failure cascades in the three metabolic networks with both randomization methods, MB and
DP. The values of the K-S statistic / associated significance level are given. Parts of this Table have
been extracted from Ref. [19] Copyright @ 2012, PACIS-JCIS

Organism SR PR

MB DP MB DP

M. pneumoniae 0.10/0.03 0.095/0.07 0.15/0 0.15/0

S. aureus 0.19/0 0.086/0.0002 0.27/0 0.14/0

E. coli 0.19/0 0.079/1.4 · 10−11 0.21/0 0.13/0

property is a result of basic physical principles, or, instead, whether it is affected
by evolutionary pressure. Since the size of cascades in MB randomized networks
is significantly lower than those in real networks, evolutionary pressure may indeed
lead to larger cascades.

Consequently, this finding indicates that evolutionary pressure may favour lower
robustness of metabolic networks with respect to the failure of reactions, seemingly
contradicting the general requirement of robustness in biological systems. On the
one hand, this finding may be a result of the evolutionary versatility of metabolic
networks, which favours organisms that are able to evolve quickly, i.e., by few mod-
ifications to their metabolic networks. On the other hand, it is worth stressing that a
cascade may not only be interpreted as the harmful spreading of failure, but also as
the ability to regulate metabolism by activating/deactivating reactions, e.g., by tran-
scriptional regulation [32]. Thus, large cascades, favoured by evolutionary pressure,
may point at the evolutionary requirement of regulating large parts of metabolism
through the regulation of small sets of enzyme-coding genes. The ability to reg-
ulate the activity of metabolic reactions by deactivating competing reactions is a
well-known principle of metabolism. These results thus indicate that evolutionary
pressure may favour the ability of efficient metabolic regulation at the expense of
robustness to reaction or gene knockouts, pointing at the necessary integration of
trade-offs from various cellular functions.

3.5 Conclusions

Results obtained in this chapter demonstrate that when E. coli and S. aureus are sub-
jected to reaction failures, their metabolic networks have a structure that minimizes
the number of large cascades. In this way, the largest part of reaction failures lead to
small cascades, resulting in a small damage for the metabolic network. Hence, one
can conclude that these organisms have a robust metabolic network against reaction
failures.M. pneumoniae exhibits network responses that are qualitatively comparable
to E. coli or S. aureus, although it is found that it less robust against individual reac-
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tion removals with reactions more prone to trigger large metabolic failure cascades
identified as key participants in the regulation of energy and fatty acid synthesis.

The concept of cascade amplification has been for the first time formulated and
interpreted as a signature of the subtle non-linearities underlying the structure of
complex networks. Specific scenarios in M. pneumoniae have been discussed. In
addition, there is a motivation to assess the predicting power of the used formalism.
In this sense, a predictor of damage propagation for single cascades, and structural
motifs underlying amplified failure patterns in situations of concurrent spreading
have been proposed.

On what respects to the analysis of single gene knockouts, it reveals its poten-
tiality in capturing most of the scenarios of experimentally determined lethality for
M. pneumoniae. Moreover, when clustered and knocked together new trends of the
complex genomic regulation of the metabolism emerge. First, the distribution of
cluster sizes seems to matter more than the actual composition of the clusters. This
is connected to the fact that the regulation of high-damage genes tends to appear
isolated from that of other genes, a kind of functional switch in metabolic networks
that at the same time acts as a kind of genetic firewall.

The introduction of a randomization model that generates new realizations of
the network which are mass balanced indicates that evolutionary pressure favours
the ability of efficient metabolic regulation at the expense of robustness to gene
knockouts. This is explained because it favours organisms to evolve quickly by little
modifying their metabolic networks, and because a failure cascade can be interpreted
as an ability to regulate metabolism by activating/deactivating reactions, apart from
being interpreted as a harmful spreading of a failure.

3.6 Summary

• The metabolic networks of three bacteria, M. pneumoniae, E. coli, and S. aureus,
have been found to be robust against reaction failures, althoughM. pneumoniae is
less robust against individual reaction removals due to its simplicity [18].

• A predictor of damage propagation for cascades produced by single reaction fail-
ures and the structural motifs underlying amplified failure patterns have been pro-
posed. It has been checked that the predictor successfully predicts damage without
the need of computing cascades [18].

• The concept of cascade amplification has been formulated and interpreted as a
signature of the subtle non-linearities underlying the structure of complex networks
[18].

• The study of structural stress at the level of metabolic genes reveals its potentiality
in capturing most of the scenarios of experimentally determined lethality for M.
pneumoniae [18].
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• The distribution of gene cluster sizes seems to matter more than the actual
composition of the clusters in relation to failure propagation in the metabolic
network [18].

• The studied organisms showa trade-off between robustness and efficient regulation
of their metabolic networks [19].
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Chapter 4
Effects of Reaction Knockouts on Steady
States of Metabolism

The activity and essentiality ofmetabolic reactions of twomodel organisms,Escherichia coli
andMycoplasma pneumoniae, are studied using Flux Balance Analysis in different environ-
ments. In particular, synthetic lethal pairs correspond to combinations of active and active
or inactive non-essential reactions whose simultaneous deletion causes cell death. Lethal
knockouts of pairs of reactions separate in two different groups depending on whether the
pair of reactions works as a backup or as a parallel use mechanism, the first corresponding
to essential plasticity and the second to essential redundancy. Within this perspective, func-
tional plasticity and redundancy are essential mechanisms underlying the ability to survive
of metabolic networks.

The previous chapter reported the study of structural perturbations modelled by the
removal of a reaction or a set of them and the application of ta viability criterion at the
structural level. This chapter goes from structure to function by using the technique
called Flux Balance Analysis (FBA) (see Chap. 2, Sect. 2.2) to implement reaction
knockouts. A FBA analysis goes beyond the structural characterization of a cascade
triggered by a reaction knockout in the sense that FBA intrinsically assigns zero
fluxes to all the reactions in the network that turn out to be non-viable, i.e., that are
not able to maintain a balanced steady state in a certain environmental condition.
In addition, using FBA one can compute how the environment affects the fluxes of
reactions in metabolic networks. In particular, FBA allows to compute the activities
and essentialities of reactions at steady state (see Chap. 2, Sect. 2.2.3), and to study
the concept of synthetic lethality and how it is related to concepts such as plasticity
and redundancy.

The computation of the activity of reactions using FBA has permitted a better
understanding of how metabolism adapts to environmental changes by means of
modifications in the biochemical fluxes [1, 2]. Beyond the concept of activity, the
study of essentiality can help to understand how metabolism adapts to an internal
failure, analysing the adaptation of the fluxes when one reaction is forced to be
non-operative. In fact, the concept of essentiality has been studied extensively, from
single reaction failures [3–5] to multiple failures [6, 7].

Plasticity and redundancy are large-scale strategies that offer the organism the
ability to exhibit no or only mild phenotypic variation in front of environmental
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changes or upon malfunction of some of its parts. In particular, these mechanisms
protect metabolism against the effects of single enzyme-coding gene mutations or
reaction failures, the final outcome being that most metabolic genes result to be not
essential for cell viability. However, some mutants fail when an additional gene is
knocked out, so that specific pair combinations of non-essential metabolic genes or
reactions become essential for biomass formation. As an example, double mutants
defective in the two different phosphoribosylglycinamide transformylases present in
Escherichia coli-with catalytic action in purine biosynthesis and thus important as
crucial components of DNA, RNA or ATP- require exogenously added purine for
growth, while single knockout mutants do not result in purine auxotrophy [8].

These synthetic lethal (SL) combinations [9–12] have recently attracted attention
because of their utility for identifying functional associations between gene functions
and, in the context of human genome, for the prospects of new targets in drug devel-
opment. However, non-viable synthetic lethal mutants are difficult to characterize
experimentally despite the high-throughput techniques developed recently [13]. We
are still far from a comprehensive empirical identification of all SL metabolic gene
or reaction pairs in a particular organism [6], even more when considering different
growth conditions. Metabolic screening based on computational methods becomes
then a powerful complementary technique particularly suited for an exhaustive
in silico prediction of SL pairs in high-quality genome-scale metabolic reconstruc-
tions.

This chapter unveils how functional plasticity and redundancy are essential
systems-level mechanisms underlying the viability of metabolic networks. In pre-
vious works on cellular metabolism [2, 14], plasticity was some times associated
to changes in the fluxes of reactions when an organism is shifted from one growth
condition to another. Instead, here functional plasticity is discussed as the ability of
reorganizing metabolic fluxes to maintain viability in response to reaction failures
when the environment remains unchanged. On the other hand, functional redundancy
applies to the simultaneous use of alternative fluxes in a given medium, even if some
can completely or partially compensate for the other [15]. An exhaustive compu-
tational screening of SL reaction pairs is performed in E. coli in glucose minimal
medium and it is found that SL reaction pairs divide in two different groups depend-
ing on whether the SL interaction works as a backup or as a parallel use mechanism,
the first corresponding to essential plasticity and the second to essential redundancy.
When comparing the metabolisms of E. coli andMycoplasma pneumoniae, one can
find that the two organisms exhibit a large difference in the relative importance of
plasticity and redundancy. In E. coli, the analysis of how pathways are entangled
through SL pairs supports the view that redundancy SL pairs preferentially affect a
single function or pathway [9]. In contrast -and in agreementwith reported SLgenetic
interactions in yeast [16]-essential plasticity, which is the dominant class in E. coli,
tends to be inter-pathway but concentrated and unveils cell envelope biosynthesis as
an essential backup for membrane lipid metabolism. Finally, different environmen-
tal conditions are tested to explore the interplay between these two mechanisms in
coessential reaction pairs. Knockouts of genes are not considered because approach-
ing directly pairs of reactions without the scaffold of enzymes and genes allows to
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determine in a clean and systematic way the minimal combinations of reactions that
turn out to be essential for an organism.

The contents of this chapter correspond to Ref. [17] Copyright @ 2014, World
Scientific Publishing, and to Ref. [18].

4.1 Activity and Essentiality of Single Reactions
of E. coli Across Media

This section summarizes the results of the study of how the activity and essentiality
of reactions in the iJO1366 version of E. coli (see Chap. 2, Sect. 2.3.1) depend on the
nutrient composition of the environment [17] Copyright @ 2014, World Scientific
Publishing. To this end, the activity and essentiality of all active reactions in a set
of minimal media are computed, and then, depending on their behaviour on each
environment, each reaction is classified according to four general categories. This
study also allows to identify reactions as eventual candidates to form part of SL pairs.

A total number of 555 minimal media can be constructed as proposed in
Chap.2, Sect. 2.2.2.1, with a final number of 333which allow growth for the iJO1366
version of E. coli. In addition to these minimal media, 10,000 randommedia are also
analysed, of which 3707 give a non-zero growth. To construct these random media,
one considers all metabolites present in the extracellular environment of E. coli.
Then, one chooses the number of these metabolites that can act as nutrients. In this
case, 90% of the total number of external metabolites are allowed to act as nutrients.
Once the number of nutrients is selected, one chooses at random metabolites until
one reaches the selected number of nutrients, and the lower bound of the exchange
reactions of each metabolite is changed to a value of −10 mmol gDW−1h−1.

4.1.1 Quantifying Activity and Essentiality

The activity and essentiality of each reaction are computed in every medium, with
the obvious constraint that essentiality is computed only if the reaction is active. On
what follows, an explanation to compute the accumulated values of the activity and
essentiality is given.

The activity ai, j of a reaction i in a medium j is defined as

ai, j ≡
{
1 if νi, j > 0
0 if νi, j = 0

(4.1)

where νi, j denotes the flux of reaction i in medium j . To obtain a representative
value of the activity, FBA calculations are performed in both minimal and random
media. In addition, the activity is normalized by the number of media in which the

http://dx.doi.org/10.1007/978-3-319-64000-6_2
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calculations have been performed. Therefore, the activity of a reaction i for a given
set of media nmedia will be obtained according to

ai ≡ 1

nmedia

nmedia∑
j=1

ai, j (4.2)

with 0 ≤ ai ≤ 1.
Essentiality is defined on the subset of active reactions. To compute the essen-

tiality of a particular reaction, the FBA growth rate is examined after removing the
corresponding reaction. An expression of the essentiality of a reaction i in a medium
j is given as

ei, j ≡
{
0 if ν ′

g, j > 0

1 if ν ′
g, j = 0

(4.3)

where νg, j ′ denotes the flux of the reaction of production of biomass in medium j
when reaction i is constrained to have zero flux. Again, the results are averaged on
several media and normalized by dividing by the number of media. In this way, the
bounds of essentiality of a reaction lay between 0 and the corresponding activity of
the reaction, 0 ≤ ei ≤ ai ,

ei ≡ 1

nmedia

nmedia∑
j=1

ei, j (4.4)

Another useful magnitude to be used later on is the ratio of media where reaction i
is essential with respect to the number of media where it is active. This measure is
trivially computed according to pi = ei

ai
.

4.1.2 Characterization of the Reactions

After computing FBA on all environments and for all mutants, essentiality vs activity
is plotted for all reactions. All points must fall on the diagonal or under it. This plot
is shown in Fig. 4.1 for both minimal and random media.

Reactions can be classified into four categories:

1. Essentialwhenever active reactions: 0 < ai = ei . They are essential in allmedia
where they are active. These reactions lay on the diagonal of the aforementioned
plot.

2. Always active reactions: ai = 1, 0 < ei < ai . They are always active and
sometimes essential. These reactions are located in the opposite y axis.

3. Never essential reactions: 0 < ai < 1, ei = 0. They are never essential but
sometimes active. These reaction are located in the x axis.
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Fig. 4.1 Representation of essentiality versus activity. aMinimal media. b Randommedia. In both
pictures the four different categories can be clearly differentiated. Diagonal: essential whenever
active reactions. Opposite y axis: always active reactions. x axis: never essential reactions. Inside
triangle: partially essential reactions. Extracted fromRef. [17] Copyright@2014,World Scientific
Publishing

4. Partially essential reactions: 0 < ai < 1, 0 < ei < ai . They are essential only
a fraction of times when they are active. These reactions are located inside the
triangle formed by the diagonal, and the y and x axes.

To understand the obtained results, the study focuses on the different subnetworks
obtained by filtering the complete original network according to the four basic
explained categories. More precisely, these subnetworks are obtained by maintain-
ing in the network only those reactions within the respective mentioned categories.
Once these subnetworks are obtained, the number of connected components in the
subnetwork are computed in order to know whether the selected subnetwork is frag-
mented or not. In particular, the giant connected component (GCC) and the strongly
connected component (SCC) (see Chap. 2, Sect. 2.1.5) of the subnetworks are com-
puted. This study is done in order to detect whether reactions within a specific type
are responsible for the percolation state of the network.

InTable 4.1, the statistics of active and essential reactions are summarized together
with values of the sizes of the connected components of the subnetworks. Results
correspond to the set of minimal media. A precise discussion of such statistics is
provided on what follows. Notice first that there are several reactions which are
strictly never active (902). This may be explained by the fact that these computations
have been done inminimalmedia, whichmay only activate a few number of reactions
needed to survive. In addition, it can be seen that the complete network, which
corresponds to values of activity 0 ≤ ai ≤ 1 and essentiality 0 ≤ ei ≤ ai , is
constituted by a single GCC and that, in addition, it has a large SCC, a typical
situation in metabolic networks.

http://dx.doi.org/10.1007/978-3-319-64000-6_2
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Table 4.1 Connected components and number of reactions NR in each subnetwork

Category CC NR

Essential whenever active reactions Total 665
ai > 0 GCC 611(91.9)
ei = ai SCC 409 (66.4)

Essential and active in some media Total 458

0 < ai < 1 GCC 409 (89.3)

ei = ai SCC 200 (48.8)

Essential and active in all media Total 207

ai = 1 GCC 198 (95.7)

ei = ai SCC 174 (86.1)

Always active reactions Total 37
ai = 1 GCC 34(91.9)
0 < ei < ai SCC 29(85.3)

Never essential reactions Total 494
0 < ai < 1 GCC 494
ei = 0 SCC 476(96.4)

Partially essential reactions Total 152
0 < ai < 1 GCC 145(95.4)
0 < ei < ai SCC 129(90.0)

All reactions Total 2250

0 ≤ ai ≤ 1 GCC 2250

0 ≤ ei ≤ ai SCC 2076 (92.0)

Never active

ai = 0 Total 902

ei = 0

Values in parentheses correspond to percentages. GCC percentages are computed by dividing the
number of reactions in GCC relative to the total number of reactions in each category, whereas
SCC percentages are computed by dividing the number of reactions in SCC relative to the number
of reactions in the GCC subnetwork. Categories in bold correspond to the four basic categories
mentioned in the text. Extracted from Ref. [17] Copyright @ 2014, World Scientific Publishing

4.1.2.1 Essential Whenever Active Reactions

A histogram of the values of the essentiality of the set of reactions essential when-
ever active reactions is shown in Fig. 4.2a, b. A bimodal distribution is clearly
displayed, with peaks at extreme values, ai = ei � 0 and the other at ai = ei � 1.
This means that there is a core of reactions that are always active and essential,
as pointed out in Ref. [2], and there is another set of reactions that are active very
few times. This histogram coincides with the classification of the dependence of
essentiality on the environment given in Ref. [5]. The peak at values of activity
∼0 corresponds to environment-specific essential reactions, whereas the peak at val-
ues of activity ∼ 1 corresponds to environment-general essential reactions. The first



4.1 Activity and Essentiality of Single Reactions of E. coli Across Media 83

0 0.2 0.4 0.6 0.8 1
ai=ei

0

0.2

0.4

0.6

f i

0 0.2 0.4 0.6 0.8 1
ai=ei

0.2

0.4

0.6

0.8

1

P
c(a

i)

1

ei (ai=1)

0

0.2

0.4

0.6

0.8

f i

1

ei (ai=1)

0
0.2
0.4
0.6
0.8

1

P
c(e

i)

1

ai (ei=0)

0

0.2

0.4

0.6

0.8

f i

1

ai (ei=0)

0
0.2
0.4
0.6
0.8

1

P
c(a

i)

1
pi

0

0.1

0.2

0.3

f i

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
pi

0
0.2
0.4
0.6
0.8

1

P
c(p

i)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.2 Histograms (fraction) and complementary cumulative probability distribution function of
activity or essentiality (depending on the category) for minimal media. a, b Essential whenever
active reactions. c, d Always active reactions. e, f Never essential reactions. g, h Partially essential
reactions. Extracted from Ref. [17] Copyright @ 2014, World Scientific Publishing

region includes reactions whose deletion abolishes growth in specific environments,
whereas the second one corresponds to reactions whose deletion suppresses growth
in all environments.

A deeper characterization of this set of reactions is made in Table 4.1, which
shows that this subnetwork has a large GCC with nearly 90% of the subnetwork.
If reactions with activity-essentiality index of 1 are excluded from this subnetwork,
another subset is obtained which has also a large GCC (89.3% of the total 458
reactions). This means that reactions with ai = ei = 1 are not responsible for the
percolation state of the subnetwork of essential whenever active reactions, which
points out to a large degree of redundancy.
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Fig. 4.3 Histograms (fraction) and complementary cumulative probability distribution function
of activity/essentiality (depending on the category) for random media. a, b Essential whenever
active reactions. c, d Always active reactions. e, f Never essential reactions. g, h Partially essential
reactions. Extracted from Ref. [17] Copyright @ 2014, World Scientific Publishing

An illustrative example of a particular reaction in this subcategory is Potassium
transport (Ktex). This is a reaction which supplies the organism with potassium.
This mineral salt is an important metabolite which influences the osmotic pressure
through the cell membrane and also secures the propagation of electric impulses.
Since these are important processes for organisms, this reaction is always active in
order to secure that these processes are done properly and that the organism has a
non-zero growth.

For random media (see Fig. 4.3a, b), a similar behaviour is obtained, with larger
probabilities at the extrema, but an extra peak is obtained for low values of activity
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and essentiality. This means that there are some reactions which are not as specific as
environment-specific reactions because they are active and essential in more than one
medium, loosing in this way their specificity. This makes sense for random media,
since they contain many metabolites that may activate many reactions and, in this
way, they lose the specificity of a minimal medium, which triggers only the reactions
that allow an organism to grow on it.

4.1.2.2 Always Active Reactions

The set of reactions called always active reactions contains reactions with ai = 1
and 0 < ei < ai . In Fig. 4.2c, d one can see that, in this case, there is a large
peak at values of ei = 0, meaning that the largest part of reactions with ai = 1
have a value of ei = 0. This means that, although these reactions are always active,
they are not essential. One may be tempted to think that reactions with very low
values of essentiality are useless and hence they could be removed from the network.
Nevertheless, there are two reasons that justify their consideration.

• Thefirst one is that these reactionsmay improve the life conditions of the organism.
These reactions, in spite of being non-essential, might be active in order to increase
the growth of the organism. As a matter of fact, to survive to hard conditions, an
organismwhich is able to reproduce fast and efficiently will, with large probability,
survive to unfriendly life conditions.

• The secondone ismore subtle. These reactions could formSLpairs.As an example,
two reactions regulated by the genes tktA and tktB, which are in the peak at ei =
0 and ai = 1, form a synthetic lethal pair and the removal of these reactions
would abolish growth by impeding the synthesis of nucleotides, nucleic acids, and
aromatic amino acids. Briefly, the reactions regulated by these mentioned genes,
called TKT1 and TKT2 and both with a complete name of Transketolase, are
reactions which belong to the Pentose Phosphate Pathway. This pathway generates
NADPH and pentoses phosphate, the latter being a precursor used in the synthesis
of nucleotides, nucleic acids and aromatic amino acids. Both reactions are always
active to ensure a sufficient production of these mentioned products, and when
one of these reactions is knocked out, the other reaction is in charge to restore this
function.

In Fig. 4.3 one can see that, as in essential whenever active reactions, this category
of always active reactions form a subnetwork with a GCC which is almost the full
subnetwork with also a large SCC.

Note that for random media (see Fig. 4.3c, d), a similar trend to minimal media
is obtained.
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4.1.2.3 Never Essential Reactions

Never essential reactions have values of activity and essentiality which satisfy ei = 0
and 0 < ai < 1. The histogram of the values of the activities for these reactions
is shown in Fig. 4.2e, f. A similar histogram to that corresponding to always active
reactions is recovered again.Thismeans that, not surprisingly, the largest part ofnever
essential reactions are not much active. The individual removal of these reactions
will leave the growth rate unaltered or only reduced. The existence of these reactions
could be explained again in terms of improving the growth of the organism and,
again, for the possibility of participating in SL pairs.

An example of a reaction of this kind is Manganese transport in via perme-
ase(no H+), MN2tpp, a reaction which pumps manganese into the organism. Its
non-essentiality comes from the fact that there exists an alternative reaction called
Manganese(Mn+2)transport in via proton symport (periplasm),MNt2pp,which also
pumps manganese into the organism, but the latter uses a proton gradient to perform
the transport.

In Table 4.1 one can see again the same trend as the other categories of reactions.
This subnetwork contains a GCC that is almost the full subnetwork with a large SCC.

For randommedia, different results are obtained in this case (see Fig.4.3e, f). The
largest peak is located at large values of activity, which means that there is a large set
of reactions which are mainly active but never essential. The peak located slightly
above 0.8 could appear due to the fact that the random media are in fact rich media.
Hence, it is possible that a common set of metabolites activate the same reactions in
many media. These reactions are responsible for the increase of the value of the flux
of the biomass reaction.

4.1.2.4 Partially Essential Reactions

Partially essential reactions contain reactions with activity and essentiality values
of 0 < ai < 1 and 0 < ei < ai . Since these reactions have both values of essen-
tiality and activity different from zero, the histogram is represented in terms of ei

ai
as

shown in Fig. 4.3g, h. The distribution is rather homogeneous, meaning that these
two quantities may be largely uncorrelated, their ratio spanning the whole range of
allowed values.

Table 4.1 shows again a large GCC containing a large SCC. Notice that this trend
has been maintained for all categories of reactions.

Again, different results are obtained for random media (see Fig. 4.3g, h). In
this case, homogeneously distributed values as for minimal media are not obtained.
Instead, the behaviour resembles that of the essential whenever active subset, they
are concentrated at low values and at a value of ei

ai
= 0.8. This means that reactions

are essential in fewer environments as compared to those in which they are active,
showing again that activity does not imply essentiality.
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4.2 SL Pairs and Plasticity and Redundancy of Metabolism

In metabolism, synthetic lethality arises when the individual failures of two reactions
are not essential for cell growth but, contrarily, their simultaneous removal causes
cell death [9–12, 19, 20].

Synthetic lethality has been originally proposed in relation to genes [9–13]. Its
definition is that two genes are synthetic lethal when their individual knockout does
not lead to the death of the organism but when both genes are removed simultane-
ously the organism is not able to overcome which leads to the death of organism
(see Fig. 4.4). Genes code for enzymes, and enzymes determine the kinetics of reac-
tions and thus whether reactions take place in a feasible amount of time. Therefore, as
for essentiality of individual genes and reactions, it is possible to extend the concept
of synthetic lethality to reactions.

FBA is a powerful technique particularly suited for an exhaustive in silico pre-
diction of SL pairs [6, 21]. Using FBA, a reaction pair deletion is annotated as
non-viable, and so as a synthetic lethal, if the double mutant shows a no-growth
phenotype.

This section presents the study of plasticity and redundancy of metabolism by
directly computing the effects of double reaction knockouts, excluding those reac-
tions that are individually essential in order to identify SL pairs. On what follows,
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a detailed analysis of the classification of identified SL reaction pairs into plasticity
and redundancy subtypes in the iJO1366 version of E. coli and in the iJW145 version
of M. pneumoniae (see Chap. 2, Sect. 2.3.2) is presented.

4.2.1 Classification of SL Pairs

Some considerations are needed in relation to the space of reactions to be considered
in forming potential SL pairs, the set of reactions that can be active but not essential
in glucose minimal medium (see Chap. 2, Sect. 2.2.2.1). Different from the analysis
in the previous section, in this section the study is primarily focused in one medium,
not in a set of environments. In addition, the space of reactions to be considered
is preliminary reduced using a method that we call “Biomass unconstrained Flux
Variability Analysis”, where Flux Variability Analysis (FVA) is applied irrespective
of the level of attainable growth (see Chap. 2, Sect. 2.2.4). The final ensemble,
formed of 1176 reactions in E. coli and 66 in M. pneumoniae, is a subset of the
original reconstruction that includes but that is not limited to the set of FBA active
reactions under maximum growth constraint [22, 23].

An important remark is worth mentioning at this point. Some FBA computa-
tionally predicted SL pairs can be inconsistent with experimental data since they
may contain at least one gene reported as essential in vivo. For E. coli, results are
checked with essentiality information given in Ref. [24]. Given the lack of direct
evidence, results for M. pneumoniae are compared to a genome-wide transposon
study in Mycoplasma genitalium given in Ref. [25]. Since a functional ortholog in
M. genitalium can be assigned to 128 metabolic genes in iJW145 (of a total of 145
genes), the essentiality of that ortholog can be associated to the corresponding gene
inM. pneumoniae. The other 17 genes are assumed, similarly to Ref. [26], to be not
essential for growth due to their absence inM. genitalium and the high similarity of
the metabolic networks of both organisms [27]. Three cases may occur when FBA
in silico results are compared to experimental essentiality:

• Both reactions in the in silico SL pair involve non-essential genes. In this case, the
pair can be considered a potential synthetic lethal (see Fig. 4.5a).

• One reaction involves a non-essential gene whereas the other is regulated by an
essential one. In this case, if the essential gene regulates more than one reaction,
one can consider that the in silico prediction is not an inconsistency (see Fig. 4.5c),
since the essentiality might refer to the rest of regulated reactions. Otherwise, the
pair is considered as inconsistent with experimental data (see Fig. 4.5b).

• Both reactions are regulated by essential genes.With the same argument as before,
for the case that both reactions have associated genes which regulate more than
one reaction, one can still consider the pair to be a potential synthetic lethal (see
Fig. 4.5d). The other possible combinations are considered inconsistent with
empirical evidence (see Fig. 4.5e).

http://dx.doi.org/10.1007/978-3-319-64000-6_2
http://dx.doi.org/10.1007/978-3-319-64000-6_2
http://dx.doi.org/10.1007/978-3-319-64000-6_4
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Detected SL pairs associated to isoenzymes (see Fig. 4.4b) and multifunctional
enzymes (see Fig. 4.4b) are also classified as inconsistencies. Isoenzymes (also
known as isozymes) are enzymes that differ in amino acid sequence but that catalyse
the same chemical reaction. In this way, a reaction can be catalysed by two different
enzymes in case that one of them becomes non-operative. Multifunctional enzymes
are those that can catalyse more than one reaction at the same time. They are very
important for organisms, since they are responsible of the catalysis of more than one
reaction and their failure may cause important damage to organisms, since many
reactions can become non-operative.

4.2.2 Classification of SL Reactions Pairs into Plasticity
and Redundancy

Of all reaction pair deletions in E. coli, 0.04% are in silico synthetic lethals and can
be separated in two different subtypes. In the biggest group, having a relative size
of 91%, one of the paired reactions is active in the medium under evaluation while
the second reaction has no associated flux. The rest of SL reaction pairs are formed
by two active reactions. Moreover, in accordance with results in Ref. [6], it is found
that inconsistencies correspond to 4% of all identified in silico SL pairs in E. coli.

Active-inactive coessential reaction pairs are referred to as plasticity synthetic
lethal (PSL) pairs (see Fig. 4.6a). 219 PSL reaction pairs are found in E. coli, 86%
of all diagnosed SL pairs in the iJO1366 version of E. coli (see Fig. 4.7). Coessen-
tial inactive and active reactions in these pairs have zero and non-zero FBA flux
respectively.When the active reaction is removed from themetabolic network, fluxes
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Fig. 4.6 Schematic representation of plasticity and redundancy synthetic lethality subtypes in
metabolic networks. Metabolites are represented by circles and reactions by squares. Coloured
reactions with black arrows represent active reactions, whereas gray discontinuous lines are used
for inactive reactions and metabolites and black for knockouts. The biomass production reaction
is represented as a larger square with an associated flux νg . When it turns to inactive, meaning
that it has no associated flux, the organism is not able to grow. For simplicity, SL reaction pairs
are illustrated in this figure as having a common metabolite, although this is not necessarily always
the case. a Initial configuration of a plasticity synthetic lethality reaction pair (reaction 2 active
and reaction 3 inactive). b Initial configuration of a redundancy synthetic lethality reaction pair
(both reactions 2 and 3 active). c Final configuration after knockout of reaction 2 in a or b. d
Final configuration after knockout of reaction 3 in a or b. e Final configuration after simultaneous
knockout of reactions 2 and 3 in a or b. Extracted from Ref. [18]

reorganize such that the zero-flux reaction in the pair turns on as a backup of the
removed reaction to ensure viability of the organism, even though the growth is
generally lowered. In contrast, the level of growth is unperturbed when the inactive
reaction is removed. As an example, the SL pair valine-pyruvate aminotransferase
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and valine transaminase form a PSL pair, the second reaction being the backup
of the first, whose simultaneous knockout produces auxotrophic mutants requiring
isoleucine to grow [28].

While the single activation of one of the reactions in a PSL pair is enough to ensure
viability in front of single reaction disruptions, the parallel use of both coessential
reactions may happen in other cases. Redundancy synthetic lethal (RSL) pairs are
those in which both reactions are active and used in parallel (see Fig. 4.6b). Of
all SL reaction pairs in the iJO1366 version of E. coli, one finds that 15 (6%) are
RSL (see Fig. 4.7). Indeed, for 13 of the 15 RSL pairs the simultaneous use of
both reactions increases fitness as compared to the situation when only one of the
reactions is active (fitness is here understood as themaximal FBAbiomass production
rate for the organism). For the remaining two pairs growth remains unchanged. As
an illustrative example of parallel use, oxygen transport combines with reactions
in the ATP forming phase of Glycolysis to form RSL reaction pairs. If Oxydative
Phosphorylation is blocked by the absence of oxygen and no alternative anaerobic
process like Glycolysis is used, the energy metabolism of E. coli collapses and so
the whole organism.

It is interesting to compute the shortest path length (see Chap. 2, Sect. 2.1.3)
between reactions in SL pairs. It is found that network distances between reaction
counterparts is slightly shorter inRSLpairs than inPSLpairs. Indeed, not all reactions
in RSL or PSL pairs are directly connected through common metabolites. Direct
connections happen for 60 and 38% of pairs respectively, while the rest can be
separated by up to four other intermediate reactions so that the average shortest
paths are 3.33 and 3.80, respectively (the average shortest path of thewholemetabolic
network is 5.02).Both essential plasticity and redundancy display overlap in reactions
and associated genes. In the 15 RSL pairs, one can identify 17 different reactions

http://dx.doi.org/10.1007/978-3-319-64000-6_2
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controlled by 15 genes or gene complexes. The 219 PSL pairs involve 108 different
reactions controlled by 61 genes or gene complexes.

Although this analysis refers to reactions, specific signatures of enzyme activity
may be worth stressing in connection with the analysis of coessential reaction pairs.
For some of the identified SL pairs, direct experimental evidence is reported in the
literature [28, 29]. Other experimental results support the buffering activity of reac-
tions in someSLpairs, like in the aerobic/anaerobic synthesis ofHeme [30, 31] and in
the oxidative/non-oxidative working phases of the Pentose Phosphate Pathway [32].
Enzymatic degeneracy can be responsible for explaining two of the in silico detected
RSL reaction pairs in E. coli. One RSL reaction pair, which produces isopentenyl
diphosphate and its isomer dimethylallyl diphosphate -biosynthetic precursors of
terpenes in E. coli that have the potential to serve as a basis for advanced biofuels
[33]— is catalysed by a single enzyme encoded by an essential gene (one-to-many
enzyme multifunctionality (see Fig. 4.6f)). Conversely, isoenzymes are encoded by
different genes but can catalyse the same biochemical reactions. This many-to-one
relationship ensures that single deletion mutants lacking any of the genes encoding
one of the isoenzymes can still be viable (see Fig. 4.6f). This case happens in oneRSL
reaction pair catalysed by isoenzymes encoded by non-essential genes associated to
transketolase activity in the Pentose Phosphate Pathway [20].

Finally, a comparative study shows that coessential reaction pairs are 50 times
more abundant in a much simpler genome-reduced organisms of increased linearity
and reduced complexity such as M. pneumoniae. To perform the computations, the
medium given in Table S5 of the Supplementary Information of Ref. [26] is used.
Constraints corresponding to the category called defined medium have been used,
adding also D-ribose. 2% of all potential candidate reaction pairs inM. pneumoniae
are synthetic lethals versus solely the 0.04% in E. coli. Inconsistencies are also much
more abundant relatively to E. coli and the balance of RSL vs PSL reaction pairs
is also different (see Fig. 4.7). Parallel use happens as frequently as the backup
mechanism in coessential reactions, with 42% of all synthetic lethals being RSL
pairs and 58% being PSL pairs. As compared to results reported in Ref. [26] for the
synthetic lethality of genes, the used methodology detects the same 29 SL gene pairs
and 15 newSL gene pairs. Since the 8 different genes in these pairs form two different
complexes of four and three genes and one gene remains isolated, the 15 SL gene
pairs reduce to just 2 SL reaction pairs (in the RSL and RSL I categories) sharing
one of the reactions. The three reactions involved in the pairs are uptake of G3P
(glycerol 3-phosphate), G3P oxidation to dihydroxyacetone phosphate, and uptake of
orthophosphate. As reported in Ref. [26], two independent routes through third-party
pathways connect Glycolysis to Lipid Biosynthesis. The first two reactions above,
R1 and R2, are involved in one of the routes, while the last reaction R3 influences
the flux through the other route. When R1 and R3 or R2 and R3 are removed from
iJW145model, the organism collapses due to the simultaneous failure of both routes.



4.2 SL Pairs and Plasticity and Redundancy of Metabolism 93

1

Cytric
Acid
Cycle

1

1 1 9

Purine and
Pyrimidine

Biosynthesis

Glycine
And

Serine
Metabolism

Pentose
Phosphate
Pathway

1

118

27

1

Glutamate
Metabolism

4

Glycero-
phospholipid
Metabolism

5

5

Nucleotide
Salvage
Pathway

Alanine and
Aspartate

Metabolism

1

1

147

1

11

1

1

1
1

11

Unassigned

Pyruvate
Metabolism

Oxidative
Phosphory-

lation

Anaplerotic
Reactions

Glycolysis/
Gluconeo-

genesis

Inorganic Ion
Transport and

Metabolism

Transport,
Inner

Membrane

1

Valine,
Leucine, and

Isoleucine
Metabolism

Cell
Envelope

Biosynthesis

Membrane
Lipid

Metabolism

Transport,
Outer

Membrane

Cofactor and
Prosthetic

Group
 Biosynthesis

Transport,
Outer

Membrane
Porin

1

Pathway
1

Pathway
2

R1 R2
SL pair

Pathway
1

Pathway
1

Pathway
1

R1 R2
SL pair

Pathway
1

Pathway
2

Redundancy Plasticity

(a) (b)

(c) (d)
Pathway

1
Pathway

2

R1 R2
SL pair

Pathway
1

Pathway
1

R1 R2
SL pair

Pathway
1

Pathway
1

Pathway
2

1

2

12

3

1
2

1

1

One
Carbon
Pool by
Folate

Pyruvate
Metabolism

Cofactor
Metabolism

Lipid
Metabolism

Amino acid
Metabolism

Nucleotide
Metabolism

Fig. 4.8 Metabolic pathways entanglement through essential plasticity and redundancy in E. coli
and M. pneumoniae. Nodes represent pathways and two pathways are joined by a link whenever
there exists a SL pair containing one reaction in each pathway. Links corresponding to plasticity
SL pairs are represented by green continuous arrows pointing from backup to active. Redundancy
SL pairs are represented by discontinuous red lines. Labels correspond to the number of pairs
which generate this combination of pathways, being thicker those links with more associated pairs.
Self-loops correspond to SL pairs with both reactions in the same associated pathway. a Pathways
entanglement in E. coli. b The same forM. pneumoniae. c Scheme of how pathways entanglement
is derived from RSL pairs. d The same for PSL pairs. Extracted from Ref. [18] (color figure online)

4.2.3 Pathways Entanglement

To investigate further the role of essential plasticity and redundancy in the global
organization of metabolic networks, one can study the entanglement of biochemical
pathways [34] through synthetic lethality. To do this, it is necessary to annotate all
reactions in synthetic lethal pairs in terms of the standard metabolic pathway classifi-
cation and to count the frequencies of dual pathways combinations both for plasticity
and redundancy subtypes. In Fig. 4.8, a visual summary of pathways entanglement
through essential plasticity and redundancy is given. A graph representation is used,
where pathways are linkedwhenever they participate together in a SL interaction (dis-
continuous lines represent redundancy SL interactions (see Fig. 4.8c) and continuous
arrows stand for plasticity SL interactions (see Fig. 4.8d). The frequency of a given
pathway combination in RSL or PSL pairs defines the weight of the corresponding
link.

In E. coli (see Fig. 4.8a), one can observe that the synthetic lethality entanglement
of pathways is in general very low, with the exception of the entanglement between
Cell Envelope Biosysthesis andMembrane Lipid Metabolism. Redundancy SL pairs
are basically intra-pathway, with only 3 of 15 being inter-pathway. Of all intra-
pathwayRSLpairs, 75%concentrate in thePentosePhosphate pathway. Interestingly,
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the distribution of PSL reaction pairs avoids that of RSL pairs and, in contrast,
tends to be inter-pathway. Of all PSL pairs, 67% include zero-flux reactions in Cell
Envelope Biosysthesis and active reactions in the Membrane Lipid Metabolism,
which unveils Cell Envelope Biosysthesis as an essential backup forMembrane Lipid
Metabolism. Intra-pathway plasticity coessentiality amounts to 29%of PSLpairs and
is concentrated in Cofactor and Prosthetic Group and Cell Envelope Biosynthesis.

In M. pneumoniae (see Fig. 4.8b) pathways entanglement through coessentiality
of reactions is very low as in E. coli. Redundancy SL pairs can be intra-pathway (4 of
10) or inter-pathway (6 of 10) and PSL pairs are basically intra-pathway (12 of 14).
Redundancy SL pairs denote the parallel use of reactions in Folate Metabolism and
reactions in Nucleotide and Cofactor Metabolism. These two pathways, Folate and
NucleotideMetabolism, are also linked by twoPSLpairswith non-essential reactions
in Folate Metabolism and essential reaction backups in Nucleotide Metabolism.
Nucleotide Metabolism is also the pathway that concentrates most PSL pairs. Both
RSL and PSL reaction pairs unveil Nucleotide and Folate Metabolism as the most
entangled pathways. Taken together, these results indicate that Folate and Nucleotide
Metabolic pathways preserve most rescue routes for reaction deletion events, in
accordance with results in Ref. [26]. The fact that the proportion of plasticity SL
pairs is considerably decreased in M. pneumoniae as compared to E. coli could be
indicative that, even if both plasticity and redundancy serve an important function
in achieving viability, essential plasticity is a more sophisticated mechanism that
requires a higher degree of functional organization, using at the same time less
resources for maximum growth. At the same time, this can also be explained by the
relative unchanging environmental conditions of M. pneumoniae in the lung, that
could have induced the elimination of pathways not required in that medium [26].
This suggests that the adaptability of M. pneumoniae is very much reduced and its
behaviour could not be resilient to environmental changes.

4.2.4 Sensitivity to Differences on Environmental Conditions

The last part of this section presents the analysis of plasticity and redundancy depend-
ing on the growth condition under evaluation. Environmental specificity of genes and
reactions has been explored experimentally [24, 35, 36] and in silico [5] for different
organisms and for random viable metabolic network samples, and it has also been
extended to multiple knockouts in yeast [14, 21] and E. coli [37].

To investigate the sensitivity of SL reaction pairs in E. coli to changes in minimal
medium composition, the study focuses on the 234 SL pairs detected in glucose min-
imal medium and checks their classification over the 333 minimal media constructed
as in the previous Sect. 4.1. Figure 4.9a shows the SL reaction pairs ranked by the
fraction of media in which the pairs are synthetically lethal. For most pairs, coessen-
tiality is not specific of an environment and only a minimal number of pairs shows
environmental specificity. In particular, 53% coessential pairs are lethal in all media
and 95% are lethal in more than 95% of environments. For each SL pair, one can
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Fig. 4.9 Synthetic lethal
reaction pairs in minimal
media. a Synthetic lethal
reaction pairs ranked by the
fraction of minimal media
for which the pair is
synthetically lethal.
b Synthetic lethal reaction
pairs ranked by the fraction
of minimal media in which
the SL pairs are classified as
essential plasticity and,
complementary, as essential
redundancy, provided that
the pairs remain
synthetically lethal.
Extracted from Ref. [18]
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count the number of media in which the SL pair is classified in the plasticity subtype
as compared to the total number of media in which the pair is predicted to be coessen-
tial. Results are shown in Fig. 4.9b. Nearly all SL pairs, 93%, are in the plasticity
subclass for more than 93% of the media, while 12 pairs display a switching behav-
iour between plasticity and redundancy. Noticeably, these pairs are intra-pathway
and share common metabolites. Of them, three pairs contribute to biosynthesis of
amino acids (Valine, Leucine, and Isoleucine Metabolism and Glycine and Serine
Metabolism) and five pairs belong to the Pentose Phosphate Pathway and are related
to the production of carbon backbones used in the synthesis of aromatic amino acids.
Finally, five reaction pairs maintain in the redundancy subclass across all conditions
in which are coessential.

The behaviour of E. coli can be explored in an amino acid-enriched medium (see
Sect. 2.2.2.2). Comparing with glucose minimal medium, the first observation is that
223 of the 234 SL pairs detected in glucose minimal medium are also found to be
lethal in amino acid-enriched medium, which means that 11 pairs are rescued. Of
the 11 RSL pairs in amino acid-enriched medium, eight are conserved and three
switch from plasticity in the minimal to redundancy in the amino acid-enriched
medium. On the other hand, 208 of the 212 PSL pairs are conserved and four change
from redundancy in the minimal to plasticity in the amino acid-enriched medium.

http://dx.doi.org/10.1007/978-3-319-64000-6_2
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Noticeably, only in one of the 208 conserved PSL pairs the pattern of activity changes
from the reductase reaction producing dimethylallyl diphosphate to the isomerization
of the less reactive isopentenyl pyrophosphate. In addition, a new set of 12195 lethal
reaction pairs occurs, all of them involving however one essential reaction in glucose
minimal medium that in amino acid-enriched medium becomes non-essential and
instead takes part in SL pairs. Apart from those, no other new SL pairs are found.

In addition, this study also considers a richmedium.To construct this richmedium,
a Luria-Bertani Broth (see Sect. 2.2.2.2) has been taken into consideration. In this
rich medium, 13 new rescues are found when compared to the minimal medium
(two new rescues as compared to the amino acid-enriched medium) and only three
SL pairs change their plasticity/redundancy category.

Plasticity and redundancy are still conserved when the growth maximization
requirement is loosen. To implement the relaxation of the growth maximization
requirement, again the glucose minimal medium is taken as a reference and the bio-
mass production or the basic nutrients uptake rates are limited. In the first case, a FVA
calculation is performed fixing the growth of the biomass to 30% of the maximal
growth in glucose minimal medium and the exchange bounds of all nutrient uptakes
are obtained. In comparison to the reference values, one can observe that the only
metabolites which lower their maximal uptakes are the mineral salts (approximately
reduced also to a 30%), while the uptake rates for the rest of compounds remained
with the same bounds. Then, it is possible to perform FBA calculations in this over-
constrained condition and compute SL pairs and their classification in RSL and PSL.
If growth is relaxed in E. coli to 30% of its maximum value in glucose minimal
medium by doing this, in silico essentiality of individual reactions does not change
but activation of reactions increases. It is found, however, that the effect of this reor-
ganization is indeed mild for plasticity and redundancy. All SL pairs are conserved
and 82% of them maintain their PSL or RSL classification. The absolute number
of RSL pairs increases from 15 to 50 since four RSL pairs in the reference condi-
tion given by glucose minimal medium change to plasticity in the overconstrained
medium, and at the same time 39 PSL pairs change to RSL. On the other hand, 180
SL pairs of 219 in the reference medium remain as PSL pairs in the overconstrained
condition. However, the pattern of activity in the pair has switched in 14% of the PSL
pairs in this case, which indicates that the specific selection of the active reaction in
a PSL pair can have an impact in the level of attainable growth.

If instead of limiting the uptake of mineral salts, the uptake rates of basic nutrients
providing sources of carbon, nitrogen, phosphorus and sulphur are overconstrained,
the effect is even softer and indeed negligible as compared to the reference medium.
To do this overcostraining, it is necessary to first apply FVA setting the value of
biomass growth to the maximum in glucose minimal medium in order to determine
an upper uptake limit. Then, the maximum rate uptake of glucose and of the other
three basic compounds is constrained to 30% of the maximum possible values while
keeping the reference values for themineral salts. FBA is then applied in the resulting
overconstrained medium and SL pairs and their classification in RSL and PSL are
computed. The number of active reactions only increases in three, the essentiality of
individual reactions and SL pairs is conserved, and 99% of them maintain their PSL

http://dx.doi.org/10.1007/978-3-319-64000-6_2
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or RSL classification with only three SL pairs that switch class and only one PSL
pair that changes the active reaction.

In both overconstrained modifications of the glucose minimal medium, the num-
ber of active reactions changed from 412 to 490 in the mineral salts overconstrained
medium and to 415 in the basic nutrients overconstrained medium. It is important
to stress that, in both cases, the essentiality of individual reactions and all SL pairs
were conserved (except for two new RSL inconsistencies in the basic nutrients over-
constrained medium).

4.3 Conclusions

The first part of this chapter presents the results of a study of the activity and the
essentiality of single reactions of E. coli in different environments. Reactions can be
divided in four categories depending on their values of essentiality and activity. By
doing this, one recovers environment-specific and environment-general reactions as
given in Ref. [5]. These correspond to the bimodal behaviour in the category called
essential whenever active reactions. Given their importance, these reactions can be
selected as drug targets since they are fundamental constituents of the metabolism
of E. coli. Another important feature that can be observed is the fact that some
reactions, in spite of being never essential, are always active, which may favor an
increase of the growth rate of the organism and the robustness of metabolism through
redundancy. The categories of reactions which show this behaviour are always active
reactions and never essential reactions. The last feature that one can extract from
the category partially essential reactions is that active reactions are not necessarily
essential. Therefore, in general extrapolating activity to essentiality is not correct.

Beyond the essentiality of single reactions, SL pairs are complex functional com-
binations of reactions (or genes) that denote at the same time both vulnerability in
front of double deletions and robustness in front of the failures of any of the two
counterparts. Working at the level of reactions, synthetic lethality is meditated by
two different mechanisms, essential plasticity and essential redundancy, depend-
ing on whether one reaction is active for maximum growth in the medium under
consideration and the second inactive, or in contrast both reactions have non-zero
flux. Plasticity sets up as a sophisticated backup mechanism (mainly inter-pathway
in E. coli) that is able to reorganize metabolic fluxes turning on inactive reactions
when coessential counterparts are removed in order to maintain viability in a specific
medium. Redundancy corresponds to a simultaneous use of different flux channels
(mainly intra-pathway in E. coli) that ensures viability and besides increases fitness.
Apparently, it could seem extremely improbable that the removal of an inactive reac-
tion together with a non-essential active one, like in PSL pairs, could have any lethal
effect on an organism. However, it is found that this situation is indeed overwhelm-
ingly dominant in E. coli as compared to redundancy synthetic lethality, and it is still
relatively frequent even in a less complex organism likeM. pneumoniae.
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Synthetic lethal mutations have been assumed to affect a single function or path-
way [9], which reinforces the idea that pathways act as autonomous self-contained
functional subsystems. In contrast, other investigations in yeast [16] report that
synthetic-lethal genetic interactions are approximately three and a half times as likely
to span pairs of pathways than to occur within pathways. In this chapter, it is found
that RSL pairs in E. coli are predominantly intra-pathway while PSL pairs, more
abundant, tend to be inter-pathway although concentrated in the entanglement of
just two pathways, Cell Envelope Biosynthesis and Membrane Lipid Metabolism.
The comparative study here shows that although pathways entanglement through
coessentiality of reactions is low in both organisms, RSL pairs in M. pneumoniae
can be intra-pathway or inter-pathway, linking Folate Metabolism and Nucleotide
and Cofactor Metabolism, and PSL pairs are basically intra-pathway and located
in Nucleotide Metabolism. Taken together, these results indicate that Folate and
Nucleotide Metabolic pathways preserve most rescue routes for reaction deletion
events, in accordance with results in Ref. [26]. The fact that the proportion of PSL
pairs is considerably decreased in M. pneumoniae as compared to E. coli could
be indicative that, even if both plasticity and redundancy serve an important func-
tion in achieving viability, essential plasticity is a more sophisticated mechanism
that requires a higher degree of functional organization, using at the same time less
resources for maximum growth. At the same time, this can also be explained by the
relative unchanging environmental conditions of M. pneumoniae in the lung, that
could have induced the elimination of pathways not required in that medium [26].
This suggests that the adaptability of M. pneumoniae is very much reduced and its
behaviour could not be resilient to environmental changes.

It has also been found that SL reaction pairs and their subdivision in plasticity and
redundancy are highly conserved independently of the composition of the minimal
medium that acts as environmental condition for growth, and evenwhen this environ-
ment is enriched with non-essential compounds or overconstrained to decrease the
maximum biomass production. These environment unspecific SL pairs can thus be
selected as potential drug targets operative regardless of the chemical environment
of the cell.

4.4 Summary

• There exists a set of reactions, and thus enzymes and genes, that must be always
active in order to ensure the viability of an organism [17] Copyright @ 2014,
World Scientific Publishing.

• Non-essential reactions deserve special attention for two causes: their role as
growth enhancers and for their potential participation in synthetic lethal pairs
[17] Copyright @ 2014, World Scientific Publishing.

• Synthetic lethality is meditated by two different mechanisms, essential plasticity
and essential redundancy, depending on whether one reaction is active for max-
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imum growth in the medium under consideration and the second inactive, or in
contrast both reactions have non-zero flux [18].

• Plasticity sets up as a sophisticated backup mechanism that is able to reorganize
metabolic fluxes turning on inactive reactions when coessential counterparts fail
in order to maintain viability in a specific medium [18].

• Redundancy corresponds to a simultaneous use of different flux channels that
ensures viability and besides increases fitness [18].

• Plasticity and redundancy are highly conserved independently of the composi-
tion of the minimal medium that acts as environmental condition for growth, and
even when this environment is enriched with non-essential compounds or over-
constrained to decrease the maximum biomass production [18].
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Chapter 5
Detection of Evolution and Adaptation
Fingerprints in Metabolic Networks

Metabolic fluxes present an heterogeneity that can be exploited to construct metabolic back-
bones as reduced versions ofmetabolic networks. These backbones can be analysed to extract
important biological information. In this chapter, the disparity filter is applied to two organ-
isms, Escherichia coli and Mycoplasma pneumoniae. Backbones offer information about
long-term evolution since they contain the core of ancestral pathways related with energy
obtainment optimized by evolution to maximize growth. At the same time, backbones unveil
short-term adaptation capabilities to variable external stimuli.

The analysis of metabolic networks is a difficult task which requires a mixed use
of tools that belong to Systems Biology, such as Flux Balance Analysis (FBA)
(see Chap.2, Sect. 2.2), and tools that belong to complex network science, such
as modelling of metabolic networks as bipartite semidirected networks (see Chap.2,
Sect. 2.1.1.). The combination of these approaches has enabled a huge step further
towards the elucidation of important biological information hidden in the complexity
of genome-scale metabolic reconstructions.

A useful tool in the endeavour of extracting useful biological information is the
concept of backbone. Backbones maintain relevant biological information while
displaying a substantially decreased number of interconnections and, hence, can
provide accurate but reduced versions of the whole system. In particular, the work
by Almaas et al. [1] introduced a filtering technique that selects the reaction that
dominates the production or consumption of each metabolite such that a high-flux
backbone can be retrieved. Although this method recovers pathways, the obtained
backbones present a linear structure with very little interconnectivity and lack many
of the features of real metabolic networks [2, 3].

Filtering approaches have also interested researchers working on networks in a
more general context.Afilteringmethod forweighted networks basedon the disparity
measure [4, 5] was developed in Ref. [6]. This approach exploits the heterogeneity
present in the intensity of interactions in real networks both at the global and local
levels [7] to extract the dominant set of connections for each element. Typically, the
obtained disparity backbones preserve almost all nodes in the initial network and a
large fraction of the total weight, while reducing considerably the number of links
that pass the filter. At the same time, disparity backbones preserve the heterogeneity
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and cut-off of the degree distribution, the level of clustering, and the bow-tie structure
(see Chap.2, Sect. 2.1.5), and other characteristic features of the original networks
[6]. Hence, the complex features of the original networks are preserved.

In this chapter, FBA is used to determine reaction fluxes and the disparity filter (see
Appendix D) [6] is applied to extract the metabolic backbones of two organisms:
Escherichia coli and Mycoplasma pneumoniae. These backbones are investigated
for fingerprints of evolution and adaptation. One finds that the metabolic backbones
of both organisms in minimal medium are mainly composed of a core of reactions
belonging to ancient pathways. This means that the significant fluxes in these bacte-
rial metabolic backbones are associated to reactions which have been present from
the earliest stages of their life and still remain at present significant for biomass
production. At the same time, external conditions modify the structure of the back-
bones, which allows to identify pathways that are more sensitive to changes in the
environment and so prone to short-term adaptation.

The contents of this chapter correspond to Ref. [8].

5.1 Identification of the Disparity Backbones of Metabolic
Networks

FBA is used to compute thefluxes of the reactions composing themetabolic networks.
These fluxes are treated as weights by the disparity filter. In this chapter, the iJO1366
version of E. coliK-12 MG1655 and the iJW145 version ofM. pneumoniae are used
(see Chap.2, Sect. 2.3). FBA calculations are performed in glucose minimal medium
with a maximum uptake of glucose limited to 10 mmol gDW−1 h−1 for E. coli and
7.37 mmol gDW−1 h−1 forM. pneumoniae (D-ribose is added to enrich the medium
for M. pneumoniae). Once the fluxes are computed, the disparity filter is applied
to the incoming and outgoing connections of each metabolite, such that only those
links to reactions which concentrate a significant amount of flux are selected for the
backbone (see Appendix D). The connectivity structure (see Chap.2, Sect. 2.1.5) of
the obtained backbones is analysed from an evolutionary perspective, and additional
media are considered to analyse environmental sensitivity (see Chap.2, Sect. 2.2.2).

An important feature of flux solutions obtained using FBA is the heterogeneity of
the flux distributions. In the same state, fluxes of reactions can span several orders of
magnitude [1, 9]. To check this statement, the probability distribution functions of the
obtained fluxes are shown (disregarding zero-flux reactions) in the insets of Fig. 5.1b,
c, confirming that, indeed, fluxes show an heterogeneous distribution at the global
level. The set of metabolites in non-zero flux reactions is considerably reduced from
the original total number, from1805 to 445metabolites inE. coli, and from266 to 227
metabolites in M. pneumoniae. To characterize the existence of such heterogeneity
also at the local level, the disparity measure [1, 6] is calculated for every metabolite
(see Appendix D). Figure5.1b, c display the disparity values for all metabolites as
a function of their incoming and outgoing degree in E. coli and M. pneumoniae,
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respectively. The shadowed areas correspond to values compatible with a random
distribution of fluxes among the reactions producing or consuming a metabolite and
help to discount local heterogeneities produced by random fluctuations (see caption
of Fig. 5.1). As shown, most metabolites present flux disparity values that cannot be
explained by random fluctuations meaning that the local distribution of the fluxes
of reactions associated to metabolites is significantly heterogeneous. One concludes
then that the disparity filter will be able to efficiently extract a backbone with the
most relevant connections for both organisms, while preserving the characteristic
features of metabolism as a complex network.

Briefly, the disparity filter works by comparing weights of links with a random
assignment. The filter preserves a link in the backbone if the probability that its
normalizedweightαi j is compatiblewith the random assignment (p-value) is smaller
than a chosen threshold α which determines the filtering intensity (see Appendix D).
One proceeds to filter the metabolic networks with fluxes of reactions as weights of
the connections between metabolites and reactions. For each metabolite i , the αi j of
each connection between metabolite i and its neighbouring reactions j is computed
and the obtained p-value is comparedwith the significance levelα. The disparity filter
can be adjusted by tuning this threshold to observe how the metabolic networks of
bothE. coli andM.pneumoniae are reduced asα is decreased from1 to 0, both of them
included, α = 1 meaning the complete network. Notice that, after applying the filter,
one recovers a bipartite representation of the metabolic backbone. To avoid working
with stoichiometrically non-balanced reactions, the filtered bipartite representation
is transformed into a one-mode projection of metabolites placing a directed link
between two metabolites if there is a reaction whose flux is simultaneously relevant
for the consumption of one metabolite and for the production of the other [1]. In
this one-mode projected backbone, one computes how many links E , nodes N and
total weight W remain. These magnitudes are normalized by dividing them by the
corresponding values in the original network, ET , NT , and WT .

Figure5.1d, e show the dependencies N/NT versus E/ET , and W/WT versus
E/ET in the associated insets, for the one-mode metabolic projections of the back-
bones of both E. coli and M. pneumoniae. While the filter can reduce considerably
the fraction of links, the corresponding fraction of nodes is maintained at almost the
original value. In addition, the total weight in the backbone only starts to drop appre-
ciably after more than 50% of the links are removed. One takes the critical value αc

as the point where the fraction of nodes starts to decay (see Fig. 5.1d, e). This critical
value can be seen as an optimal point which reduces greatly the number of links in
the network preserving at the same time most nodes and so as much biochemical
and structural information as possible. The values are αc = 0.21 for E. coli and
αc = 0.37 for M. pneumoniae.
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Fig. 5.1 Scheme of the application of the disparity filter and measures of the heterogeneity of
reaction fluxes in E. coli and M. pneumoniae. a Scheme of the filtering method. Blue nodes are
metabolites and green squares denote reactions. Incoming connections to metabolites are repre-
sented by red arrows, outgoing connections with blue arrows, and bidirectional connections with
dark yellow arrows. OMP denotes one-mode projection. b Disparity measure as a function of
incoming and outgoing degrees (k) in E. coli. The shadowed area corresponds to the average plus
2 standard deviations given by the null model, meaning that points which lie outside this are can be
considered heterogeneous [6]. Inset global distribution of fluxes of E. coli. c Disparity measure as a
function of IN and OUT degrees (k) forM. pneumoniae. Again, the shadowed area corresponds to
the average plus 2 standard deviations given by the null model. Inset global distribution of fluxes of
M. pneumoniae. d Fraction of nodes as a function of the fraction of links in E. coli. Inset remaining
weight as a function of the fraction of links in the network. e Fraction of nodes as a function of the
fraction of links inM. pneumoniae. Inset remaining weight as a function of the fraction of links in
the network. Extracted from Ref. [8] (colour figure online)
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5.2 Evolutionary Signatures in the Backbones
of Metabolites

The metabolic backbones of both E. coli and M. pneumoniae are constructed using
the identified critical values for the significance level. The backbones retain all the
445 and 227 metabolites present in active reactions respectively. Next, one analy-
ses their structure in terms of connectedness. Metabolic networks have been found
to display typical large-scale connectivity patterns of directed complex networks,
called the bow-tie structure, with most reactions in a interconnected core, named the
strongly connected component (SCC), together with in (IN) and out (OUT) com-
ponents formed mainly by nodes directly connected to the SCC component [2, 10]
(see Chap.2, Sect. 2.1.5). This is the case of the original metabolic networks of both
organisms, whose SCCs contain the largest part of the metabolites and reactions
of the network, and whose IN and OUT components are formed, respectively, by
nutrients and waste metabolites.

Metabolites in the backbone of E. coli are arranged in a connected component of
178 nodes and several disconnected small components (51). Three different SCCs
can be identified in the connected part of the backbone, each with 25, 10, and 6% of
the nodes in the connected component (see Fig. 5.2a). The two smallest SCCs are in
the OUT component of the largest SCC. For the three of them, the IN and OUT com-
ponents and tendrils are recovered. Metabolites corresponding to central compounds
of metabolism are identified in these SCCs: protons, water, ATP, glutamate, phos-
phate, NAD+, diphosphate, ADP andFAD+. Thesemetabolites are highly-connected
metabolites even in the metabolic backbone, helping to preserve the same structural
features of the complete metabolic network.

Since links in the metabolic backbone denote reactions transforming metabolites,
it is interesting to annotate links with the pathway associated to the corresponding
reaction. In this way, it is possible to count the composition of the three SCCs in
terms of pathways. Starting with the largest SCC (see Fig. 5.2a), one finds that the
major contributions are Oxidative Phosphorylation (26%), Citric Acid Cycle (16%),
Glycolysis/Gluconeogenesis (15%), Pentose Phosphate Pathway (9%), and Gluta-
mate Metabolism (9%) (see Fig. 5.2c). It has been demonstrated that these routes are
ancient pathways that have been conserved through evolution. More precisely, Gly-
colysis and Pentose Phosphate Pathway take place without the need of enzymes in a
mimetic Archean ocean [12]. Concerning the Citric Acid Cycle, it is also an ancient
pathway that has evolved in order to achieve maximumATP efficiency [13] by being
coupled to Oxidative Phosphorylation and Glycolysis [14], in addition to help the
organism to decrease their quantity of reactive oxygen species bymodulation of their
participating metabolites [15]. Another pathway significantly present in the largest
SCC is Glutamate Metabolism. Glutamate has been reported to be one of the oldest
amino acids used in the earliest stages of life [16].

Links in the other two SCCs correspond also to reactions belonging to ances-
tral pathways. The second largest SCC contains links that belong mainly to Purine
and Pyrimidine Biosynthesis (91%). Purines and pyrimidines serve as activated

http://dx.doi.org/10.1007/978-3-319-64000-6_2


106 5 Detection of Evolution and Adaptation Fingerprints in Metabolic Networks

M. pneumoniae

E. coli

Amino Acid Metabolism
Glycolysis
Pyruvate Metabolism
Nucleotide Metabolism
Lipid Metabolism

CoA Metabolism
Cofactor Metabolism
Pentose Phosphate Pathway
Alternative Sugar Metabolism
One Carbon Pool By Folate

Amino Acid Metabolism
Carbohydrate Metabolism
Nucleotide Metabolism
Energy Production and Conversion
Lipid Metabolism
Cofactor and Prosthetic Group Metabolism
Transport, Outer Membrane
Transport, Inner Membrane
Cell wall / Membrane / Envelope Metabolism 
Inorganic Ion Transport and Metabolism
Others

25aics

3hddcoa

3hhcoa

3hocoa

3oddcoa

5caiz

ac

accoa

adp

ala-L

arg-L

asp-L

atp

btcoa
co2

co2[e]

co2[p]

coa

cys-L

cyst-L

fad

fadh2

fpram

gar

glc-D[e] glc-D[p]

gln-L

glu-L

gly

gmp

gtp

h2o h2o[e]

h2o[p]h

hco3

hxcoa

met-L

nad

nadh

nadp

nh4

nh4[e]
nh4[p]

o2
o2[e]

o2[p]

oc2coa
occoa

pi

pi[e] pi[p]

ppi

pyr

q8 ser-L
so4so4[e]

so4[p]

thf

tyr-L

udpump

utp

val-L

E. coli links

atp

nad

nadh

adp

pi
coa

ppi

udp

amp

accoa

utp
h2o[e]

co2[e]

ac[e]

lac[e]
h2o

M. pneumoniae links

IN
OUT
SCC
SCC
SCC
TENDRIL
TUBE

Connected components

OP CAC GG PPP GM
Others G PM NM AAM LM

g6p

pep

E. coli M. pneumoniae

0

10

20

30

%
 re

ac
tio

ns

26

16 15

9 9

25
51

30

13

4 2

(a)

(b)

(c) (d)

Fig. 5.2 SCCs of the backbone of metabolites and corresponding pathways. a Connected compo-
nent in the metabolic backbone of E. coli. The colors of the nodes depend on the component each
node belongs to. The color of the links, and its association given in the legend, depends on the
functional categories given in Ref. [11], where each category contains pathways that realize similar
tasks. bConnected component of themetabolic backbone ofM. pneumoniae. The color of the nodes
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from Ref. [8] (colour figure online)



5.2 Evolutionary Signatures in the Backbones of Metabolites 107

precursors of RNA and DNA, glycogen, etc. [17, 18], and it has been found that
the synthesis of purines and pyrimidines was the first pathway involving enzyme-
based metabolism [19]. Interestingly, the other contribution to this SCC is Glycine
and SerineMetabolism. Glycine is a precursor of purines and pyrimidines. Pathways
related to the third SCC are Membrane Lipid Metabolism (97%) and Cofactor and
Prosthetic Group Biosynthesis (3%). Membrane Lipid Metabolism supplies the nec-
essary lipids to generate the cell membrane needing the participation of the cofactor
FAD+/FADH2. It has been shown that the pathways involved in lipid metabolism
exhibit differences between different lineages in organisms [20], whereas pathways
related to central metabolism are more conserved and are transversal [20].

When considering α values smaller than the critical one, implying that the filter
is more restrictive and more heterogeneity is needed to overcome it, we observe
that the smallest SCCs discussed above disappears. More precisely, it happens for
a value of α = 0.19. Decreasing even more the significance level to α = 0.15
the SCC containing reactions in the Purine and Pyrimidine Biosynthesis pathway
retains the 30% of the nodes for αc = 0.21, whereas the largest SCC still contains
a 86%, showing the large resistance of this large core to lose nodes. At a value of
α = 0.14, the second SCC finally disappears and there only remains a single SCC,
still preserving 82%of the nodes in it forαc = 0.21.Hence, energymetabolism shows
a large resistance to get fragmented even though thefilter becomesprogressivelymore
and more restrictive.

To contrast the obtained results in E. coli, the same analysis in M. pneumoniae
is performed. Its critical value αc is 0.37 (see Fig. 5.1). The connected component
of its metabolic backbone is shown in Fig. 5.2b. It contains two SCCs, one of them
being irrelevant with only two nodes (see Fig. 5.2b). The relevant SCC contains 21%
of the nodes in the connected component, and the largest part of its links are related
also with energy metabolism as in E. coli. The dominant pathways in this core are
Glycolysis and Pyruvate Metabolism (see Fig. 5.2d). Along Glycolysis, Pyruvate
Metabolism is also an ancestral pathway that was present in the earliest stages of life
[21], when no oxygen was present in the early atmosphere.

5.3 The Metabolic Backbones of E. Coli Encode Its
Short-Term Adaptation Capabilities

The previous section analyses the metabolic backbone of E. coli in glucose mini-
mal medium in terms of the long-term evolution of the organism. In this section,
the study is focused on how changes in the environment modify this backbone,
which exposes short-term adaptation capabilities. First, FBA fluxes that maximize
the growth rate of E. coli in the rich medium Luria–Bertani (LB) Broth [22, 23]
are calculated. Afterwards, the disparity filter is applied to extract the metabolic
backbone in this new environment, that is obtained for a significance level threshold
αc = 0.4. This value is noticeably larger than αc = 0.21 identified for the glucose
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Fig. 5.3 Dependence of the distribution of pathways in the metabolic backbone of E. coli with
the composition of environment. a Histogram of the fraction of links belonging to each pathway
(x axis) for the 333 minimal media (left) and in the rich medium (right). b Probability distribution
function of αc for all minimal media. c Probability distribution function of the fraction of links in
the metabolic backbones for all minimal media. d Histogram of weights of links in the metabolic
superbackbone. Extracted from Ref. [8]

minimal medium. Interestingly, this rich medium activates 400 reactions, 11 less
than in glucose minimal medium. Of them, 279 are active in both media, of which
247 have a larger flux in LB Broth. An analysis of the connected components in the
metabolic backbone of E. coli in rich medium is also performed. One finds that it
contains a large connected component with 449 metabolites and 60 small discon-
nected components. The connected component contains also three SCCs. However,
two of them are tiny with only two nodes, whereas the largest one encloses 34% of
the nodes in the connected component. Interestingly, the pathway contributing more
reactions to this large SCC is Membrane Lipid Metabolism (see Fig. 5.3a). This fact
is in accordance with Ref. [24], where the authors found that the expression of the
genes which synthesize fatty acids was generally elevated in rich medium. Another
important difference is the loss of prominence of Oxidative Phosphorylation and the
Pentose Phosphate Pathways.

Next, the set of minimal media given in Ref. [11] (see Chap.2, Sect. 2.2.2.1) are
considered, where different carbon, nitrogen, phosphorus and sulphur sources are
alternated. For each minimal medium, αc is scanned as in Fig. 5.1b, c. In Fig. 5.3b, c,

http://dx.doi.org/10.1007/978-3-319-64000-6_2
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one plots, respectively, the probability distribution functions of the tuned αc values
and of the fraction of links remaining in the metabolic backbones for all media.
One finds that there is a characteristic value of these magnitudes with no outliers,
meaning that the flux structure is very similar across media in spite of the difference
in the composition of nutrients. The presence of these characteristic values of αc

and the retained fraction of links in the metabolic backbones motivates to merge all
of them into a single merged metabolic backbone. The links in this superbackbone
correspond to reactions that passed the filter in any of the external media considered
and are annotated with a weight that corresponds to the number of media in which
the corresponding metabolic backbone contains the link. The histogram of the dis-
tribution of these weights is shown in Fig. 5.3d, characterized by a clear bimodal
behaviour. One peak corresponds to links being common to all media, and the other
corresponds to the most common situation of links specific to a few media.

An analysis of connectedness shows that this superbackbone contains a large
connected component and 11 disconnected components. The connected component
is composed by a large SCC with 43% of its nodes, in addition to three small SCCs
containing only two nodes each. A pathway composition analysis in the large SCC
indicates that, again, one obtains significantly different results from the glucose
minimal medium (see Fig. 5.3a). The most prominent pathway is Alternate Carbon
Metabolism, in agreement with Ref. [25], where the authors found that Alternate
CarbonMetabolism is related to geneswhose expression depends on external stimuli,
particularly on alteration of carbon sources. It is also in agreement with results in
Ref. [26], where the authors hypothesize that Alternate Carbon Metabolism can
adapt to different nutritional environments, and also with results in Ref. [27], where
AlternateCarbonMetabolism is found to be an important intermediate pathway in the
network of pathways. The second most abundant pathway corresponds to Transport,
Inner Membrane, which again is in agreement with Refs. [25, 27]. It is a transversal
pathway which is in charge of the transport of metabolites between periplasm and
cytosol. Finally, if one retains links present at least in 25% of the minimal media, the
network fragments into 40 components with the largest one containing five SCCs,
which indicates that links with small weight, i.e. links specific for a few media, have
an important role in providing global connectivity to the superbackbone.

5.4 Conclusions

Identifying high-flux routes in metabolic networks has been useful in order to, for
example, identify principal chains of metabolic transformations [1, 28, 29]. In this
chapter, one goes beyond the mere identification of high-flux routes with metabolic
pathways. Using a high-flux fluctuation analysis, it is possible to identify ancestral
pathways and, on the other hand, pathways with capabilities to adapt to short-term
external changes. At the core of the high-flux fluctuation analysis, a filtering tool
which needs no a priori assumptions for the connectivity of the filtered subnetworks
is used, but that produces reduced versions which are globally connected and retain
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the characteristic complex features of the original network. This procedure allows
to extract a metabolic backbone which contains all relevant connections given a set
of external nutrients, recovering both intra- and inter-pathway connections which
can be understood as the superhighways of metabolism. Further, an evolutionary
explanation can also be given for this identification of both intra- and inter-pathway
connections since the cooperation between reaction inside and outside pathways
implies that the overall performance of a cell will be improved due to a better and
more efficient utilization of the available resources. This fact reinforces the idea that
pathways are not isolated identities performing their tasks independently of others
[27].

As stated in Ref. [30], properties that originate from evolutionary pressure should
not be observed in random networks. Due to the fact that the disparity filter identifies
links that deviate from a random null model, it allows to identify those reactions
for which evolutionary pressure has had a large incidence. Since FBA flux solutions
are used, in this chapter the effect of evolutionary pressure is understood to favor
the maximization of the growth of the organism [31–33]. The evolutionary analysis
of the metabolic backbones of the two considered organisms in minimal medium
shows that their SCCs are composed by reactions that belong to ancient pathways. In
E. coli, each SCC has different and definite metabolic functions. In both E. coli and
M. pneumoniae, the largest SCC contains pathways related to energy metabolism,
meaning that these organisms have evolved towardsmaximumefficiency in obtaining
chemical energy, something very important in case of nutrient scarcity. A smaller
SCC is responsible for the synthesis of purines and pyrimidines, vital for DNA
/ RNA synthesis. The third SCC corresponds to the metabolism of lipids, the most
important constituents that compose the cellmembrane. Twofindings relating the two
small SCCs deserve also special attention. Firstly, the two small SCCs are located
in the OUT component of the large SCC. Secondly, as the filter becomes more
restrictive, the small SCCs fragment, while the large SCC still maintains a large part
of links and nodes. These features could be explained in terms of the functional
requirements of the small SCCs. On the one side, they need chemical energy to
perform their tasks and, on the other side, they need also basic building blocks. These
tasks are performed in the large SCC by, for example, Glycolysis/Gluconeogenesis
or the Citric Acid Cycle. Therefore, it suggests that those SCCs were added to the
OUT component of the large SCC in later steps of evolution. A simpler organism,
M. pneumoniae, has no other relevant SCCs apart from energymetabolism, as a result
of its parasitism, which has led to the loss of many metabolic functions [34]. More
precisely, in M. pneumoniae the Citric Acid Cycle and Oxidative Phosphorylation
do not take place [34, 35], meaning that it must rely on organic acid fermentation to
obtain energy. Moreover, changes in the growth rate greatly affect the fluxes through
Glycolysis and Pyruvate Metabolism [34].

The study of the dependence on the environment of the E. coli metabolic back-
bone allows to identify short-time adaptation capabilities. Regarding rich medium,
one observes that the critical value of α is substantially different than the one in
glucose minimal medium, suggesting that this enriched medium modifies signifi-
cantly the flux structure compared to the glucose minimal medium. The bacterium
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in rich medium displays less active reactions than in glucose minimal medium since,
in minimal medium, many reactions must be active in order to synthesize biosyn-
thetic precursors that in the rich medium can be obtained from the environment, in
agreement with Ref. [24]. The pathway calledMembrane LipidMetabolism achieves
a high relevancy, being the most abundant pathway in the largest SCC of the rich
medium metabolic backbone. This happens because the instantaneous response of
E. coli to this rich medium, which induces a large increase in the growth rate of the
organism due to nutrient abundance, is to synthesize as much as membrane lipids
as possible, since fast-growing cells must synthesize membrane components more
rapidly to satisfy the high lipid demand to generate new cells [24]. The analysis of
the adaptation of E. coli to 333 different minimal media shows that the distribution of
fluxes is practically independent on the composition of the nutrients present in these
environments, allowing to extract characteristic features that describe the backbones
of the metabolic network independently of the environment. This permits the con-
struction of a merged backbone that comprises all the links composing the metabolic
backbone in each media. This leads to the identification of pathways whose associ-
ated reactions are more sensitive to changes in the environment, unveiling Alternate
Carbon Metabolism as the pathway with more capabilities to respond to external
stimuli, in accordance with previously reported results [25, 26].

The use of filteringmethods usually imply a drastic reduction of the complexity of
metabolic maps, which weakens the validity of potentially inferred conclusions. The
application of the disparity filter based on a high-flux fluctuation analysis to produce
metabolic backbones enables to reduce the system while maintaining all relevant
interactions and so it becomes a useful tool to unveil sound biological information.
For instance, the investigation of E. coli and M. pneumoniae revealed metabolic
backbones in minimal medium mainly composed of a core of reactions belonging
to ancient pathways, for which the effects of evolutionary pressure are higher, and
unveiled pathways with high capacity to respond to external stimuli.

5.5 Summary

• The disparity filter is very efficient in order to compute metabolic backbones as
reduced versions of metabolism which retain its complexity [8].

• The study of the bow-tie structure of the backbones in a glucose minimal medium
reveals that pathways related with energy obtainment have an important evolu-
tionary role in E. coli and M. pneumoniae [8].

• The study of the backbone of E. coli in rich medium identifies the pathway Mem-
brane Lipid Metabolism as relevant for growth in the nutritionally rich medium,
due to the necessity of large amounts of lipids to generate the cell membrane [8].

• The analysis of the superbackbone, constructed by merging all the backbones cor-
responding to different minimal media, recognizes the pathway Alternate Carbon
Metabolism as the most relevant pathway to respond to external stimuli [8].
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Chapter 6
Assessing FBA Optimal States in the Feasible
Flux Phenotypic Space

Optimal growth solutions can be confronted with the whole set of feasible flux phenotypes
(FFP), which provides a reference map that helps to assess the likelihood of optimal and
high-growth states and their extent of conformity with experimental results. In addition, FFP
maps are able to uncover metabolic behaviours that are unreachable using models based
on optimality principles. The information content of the full FFP space of metabolic states
provides with an entire map to explore and evaluate metabolic behaviour and capabilities,
opening new avenues for biotechnological and biomedical applications.

The results presented in previous chapters required an extensive use of Flux Balance
Analysis (FBA) (see Sect. 2.2) in order to extract backbones or to compute the effect
of failures of reactions. If the removal of a reaction or a pair of reactions is not lethal
for the organism, i.e., the growth rate is not zero, there can exist many flux solutions
for the organism to be alive. As it has been already explained, the FBA solution is
a possible solution, the one which maximizes the growth rate. One may be tempted
to ask where the solutions given by FBA lay in the whole space of possible flux
solutions of a metabolic network. In this way, it will be possible to know whether
the state given by FBA is indeed representative of the system or, on the contrary, it is
not a representative solution of the flux space, this eventually being interpreted for
example due to evolutionary effects.

FBA studies, like in the previous Chap. 4, reveal that metabolism is a dynamically
regulated system that reorganizes to safeguard survival [1, 2], implying thatmetabolic
phenotypes directly respond to environmental conditions. For instance, unicellular
organisms can be stimulated to proliferate by controlling the abundance of nutrients
available. In richmedia, cells reproduce as quickly as possible by fermenting glucose,
a process which produces high specific growth rates as well as large quantities of
excess carbon in the form of ethanol and organic acids [3]. To survive the scarcity of
nutrients during starvation periods, Glycolysis is hypothesized to switch to oxidative
metabolism, which no longer maximizes the specific growth rate, but instead the ATP
yield needed for cellular processes. Cells of multicellular organisms show similar
metabolic phenotypes, relying primarily on Oxidative Phosphorylation when not
stimulated to proliferate and changing to non-oxidative glycolyticmetabolism during
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cell proliferation, even if this process -known in cancer cells as the Warburg effect
[4, 5]—is much less efficient at the level of energy yield.

These metabolic phenotypes are captured by FBA. However, the identified solu-
tions are frequently inconsistent with the biological reality since no single objective
function describes successfully the variability of flux states under all environmental
conditions [6, 7], and in fact the highest accuracy of FBA predictions is achieved
whenever the most relevant objective function is tailored to particular environmental
conditions according to the empirical evidence for a very specific metabolic pheno-
type. For instance, FBA requires either a rich medium or a manual limitation of the
oxygen uptake to a physiological enzymatic limit tomimic the observed fermentation
of glucose to formate, acetate, or ethanol typical of proliferative metabolism, while
in minimal medium optimization of growth rate relies primarily on Oxidative Phos-
phorylation, which increases ATP production converting glucose to carbon dioxide,
as in starvation metabolism. However, along optimal metabolic phenotypes, there is
a whole space of possible states non-reachable by invoking optimality principles that
prevent non-optimal biological states. Optimization of a biological function in the
absence of a priori biological justification, which happens for instance under condi-
tions for proliferative or starvation metabolism, may weaken in silico predictions.

In this chapter, optimal growth rate solutions are confronted to thewhole set of fea-
sible flux phenotypes (FFP) of coreEscherichia colimetabolism inminimalmedium,
which provides a reference map that helps to assess the likelihood of optimal and
high-growth states [8]. The whole set of feasible flux phenotypes is determined by
mass-balance conditions and the bounds imposed on metabolites. Mathematically,
it constitutes a convex finite polytope, and it is sampled using an algorithm called
Hit-And-Run (HR) (see Appendix E) [9]. One can quantitatively and visually show
that optimal growth flux phenotypes are eccentric with respect to the bulk of states,
statistically represented by the feasible flux phenotypic mean, which suggests that
optimal phenotypes are uninformative about the more probable states, most of them
low-growth rate. Feasible flux phenotypic space is proposed as a benchmark to cal-
ibrate the deviation of optimal phenotypes from experimental observations. Finally,
the analysis of the entire high-biomass production region of the feasible flux pheno-
typic space unveils metabolic behaviours observed experimentally but unreachable
by models based on optimality principles, like FBA, which forbid aerobic fermenta-
tion -a typical pathway utilization of proliferative metabolism- in minimal medium
with unlimited oxygen uptake.

The contents of this chapter correspond to Ref. [8].

6.1 Optimal Growth Is Eccentric with Respect
to the Full FFP Space

As in FBA, feasible flux states of a metabolic network are those that fulfil stoichio-
metric mass balance constraints together with imposed upper and lower bounds on
the reaction fluxes. These constraints restrict the number of solutions to a compact
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convex set which contains all possible flux steady states in a particular environmental
condition. In glucose minimal medium (see Chap. 2, Sect. 2.2.2.1), the FFP space
of the core E. coli model is determined by 70 potentially active reactions, including
biomass formation and the ATPmaintenance reaction, and 68 metabolites. Using the
HR algorithm, a raw sample of 109 feasible states is obtained, from which a final
uniform representative set of 106 feasible states is extracted.

Notice that the used approach is suitable for genome-scale network sizes beyond
the reduced size of the core E. colimodel. There is not any fundamental or technical
bottleneck that prevents its application to complete metabolic descriptions at the cell
level. In this chapter, the core E. colimodel is used due to a matter of computational
time and ease of visualization.

From the sampled set of core E. coli metabolic states in minimal medium of glu-
cose bounded to 10 mmol gDW−1h−1, the metabolic flux profiles of each individual
reaction is collected as the set of its feasible metabolic fluxes. From such profile, one
can compute the probability density function f (ν) which describes the likelihood
for a reaction to take on a particular flux value. In Fig. 6.1, the profiles of all reac-
tions are shown. One can observe a variety of shapes, all of them low-variance, most
displaying a maximum probability for a certain value of the flux inside the allowed
range,1 and many being clearly asymmetric. The allowed range is computed using
Biomass unconstrained Flux Variability Analysis (see Chap. 2, Sect. 2.2.4).

To characterize the dispersion of the possible fluxes for each reaction, one can
measure its coefficient of variation CV ( f (ν)) calculated as the ratio between the
standard deviation of possible fluxes and their average. For all but three reversible
reactions (Malate dehydrogenase, Glucose-6-Phosphate isomerase, and Glutamate
dehydrogenase), the only reversible reactions having a low associated flux mean
and thus a higher CV ( f (ν)), this metric is below one and when ranked for all
reactions it steadily decreases to almost zero, Fig. 6.2a. Interestingly, it can be found
that this coefficient is significantly anticorrelated with the essentiality of reactions
as observed experimentally [10] (point-biserial correlation coefficient −0.29 with
p-value 0.01, see Appendix C). This means that essential reactions tend to have
a highly concentrated profile of feasible fluxes. Besides, and only for the glucose
transferase reaction GLCpts, one finds a zero probability of having a zero flux, which
indicates that this reaction is essential in glucose minimal medium as expected. The
asymmetry of each profile is characterized by the distance between themore probable
flux in the FFP space and the lower flux bound of the flux variability range rescaled
by the flux variability range of the reaction (see Chap. 2, Sect. 2.2.4). In Fig. 6.2b,
a scatter plot of values for all 68 core reactions is shown. Strikingly, the rescaled
distances cluster in three regions around 0, 0.5 and 1 forming groups of sizes 38, 15
and 17 respectively. This indicates that the most probable flux is close to either the
lower or upper bound or, conversely, the probability distribution function tends to be
quite symmetric. Moreover, it can be also observed that an anticorrelation between

1Notice that none of these histograms can have more than one peak due to the convexity of the
steady-state flux space.

http://dx.doi.org/10.1007/978-3-319-64000-6_2
http://dx.doi.org/10.1007/978-3-319-64000-6_2
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Fig. 6.1 Probability density functions of metabolic fluxes values for all reactions in core E. coli
under glucose minimal conditions. Each graph shows the reaction label, the flux variability range
(values inside parentheses), and each associated pathway (acronyms in italics). Notice that the range
plotted in the axes does not coincide with the flux variability range, since in the axes an optimal x
range for each reaction is chosen to distinguish the shape of each profile. In addition, in each profile
the position of the FBA point (blue marker) and the position of the Mean (green marker) are also
shown. Extracted from Ref. [8] (color figure online)
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Fig. 6.2 Analysis of reaction profiles and visualization of the FFP space. a Coefficient of variation
for all core reactions ranked by value. b Scatter plot of distances between the more probable flux
in the FFP space and the lower flux bound rescaled by flux variability range for each reaction.
c Complementary cumulative distribution function of distances between FBAmaximal growth flux
and FFP space mean flux rescaled by flux variability range for each reaction, in log-log scale.
d Matrix of Pearson correlation coefficients measuring the degree of linear associations between
feasible fluxes of reactions (acronyms of the pathways are shown in abbreviations). e Projection
of the FFP space onto the two principal component vectors of the correlation matrix in e. All
sampled flux phenotypes are normalized and projected along the first (ρ1) and second (ρ2) principal
components. The plot is in polar coordinates, with the negative logarithm of the radius. Themajority
of points lies in a circle close to the origin (the darker area). The FBA solution (green circle) is,
conversely, rather eccentric. Parts of this Figure have been extracted from Ref. [8]

the length of the flux range and the position of the most probable flux is present, so
that the closer is this to its maximum value the shorter is the allowed range of fluxes.

In order to assess the likelihood of flux states corresponding to FBAmaximization
of the flux through the biomass reaction (FBA-MBR) (or equivalently of the growth
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Fig. 6.3 a Probability distribution function of the radii of all solutions before applying the negative
logarithmic transformation. The red area denotes the probability of having a smaller radius than
the FBA solution. This fraction of area is the 3% of the total area, which means that the 97% of the
solutions have a larger radius than the FBA solution. b Cumulative probability distribution function
of the radius. The blue region denotes the range of solutions with a radius smaller than FBA. The
probability of having a radius smaller than FBA is the y-value of the curve at the rightmost side of
the region. Extracted from Ref. [8] (color figure online)

rate) in relation to typical2 points within the whole FFP space, one can calculate the
average flux value for each reaction, the mean, and compare it to the FBA optimal
biomass production flux. The complementary cumulative distribution function of the
distances between these two characteristic fluxes rescaled by the flux variability range
of reactions is shown in Fig. 6.2c. A broad distribution of values can be observed
over several orders of magnitude with no mean value actually very close to the FBA
maximal solution except for a few reactions, typically working at maximum growth.
At the other end of the spectrum, deviated reactions include for instance excretion
of acetate and phosphate exchange. As a summary, one can conclude that the mean
and the FBA biomass optimum are rather distant, which suggests that FBA optimal
states are uninformative about phenotypes in the bulk of states in the FFP space.

To visualize neatly the eccentricity of the FBAmaximumgrowth statewith respect
to the bulk ofmetabolic flux solutions, Principal ComponentAnalysis [11, 12] is used
in order to reduce the high-dimensionality of the full flux solution space projecting it
onto a two-dimensional plane from themost informative viewpoint (seeAppendix F).
Reaction profiles are taken in pairs to calculate the matrix of Pearson correlation
coefficients measuring their degree of linear association (see Fig. 6.2d). Note that an
ordering of reactions by pathways allows to have a clear visual feedback of intra-
and inter-pathway correlations taking place in the core E. coli metabolic network,
such that clusters of highly correlated reactions appear as bigger darker squares. The
two axes of our projection correspond to the two first principal components of this
profile correlation matrix ρ1 and ρ2, which account for most of the variability in
profile correlations. Each sampled metabolic flux state has been rescaled as a z-score
centred around the mean and projected onto these axes, as shown in the scatter

2In the mathematical/computational context, typical means statistically representative in relation to
the whole set of flux states contained in the FFP space.
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plot Fig. 6.2e in polar coordinates, where a negative logarithmic transformation to
the radial coordinate for ease of visualization has been applied. The majority of
phenotypes have a radius close to zero. Since points closer to the origin are better
described by the two principal components (see Appendix F), this implies that ρ1 and
ρ2 capture the largest variability of the sampled FFP. Clearly, the FBAoptimal growth
solution is rather eccentric with respect to typical solutions, with an associated radius
of 0.98 in this representation. In fact, 97% of states have a smaller radius than the
optimal growth solution (see Fig. 6.3).

6.2 The FFP Space Gives a Standard to Calibrate
the Deviation of Optimal Phenotypes from
Experimental Observations

This section focuses on the relationship between primary carbon source uptake and
oxygen need to illustrate the potential of the FFP space as a benchmark to calibrate the
deviation of in silico predicted optimal phenotypes from experimental observations.
Sampled FFP states of core E. coli, in particular FFP mean values, as a function
of the upper bound uptake rate of the carbon source are compared with reported
experimental data for oxygen uptakes in minimal medium with glucose, pyruvate, or
succinate as a primary carbon source (seeFig. 6.4). The line of optimality representing
FBA optimal growth solutions is also considered. Glucose experimental data points
were used from Ref. [1], experimental results for pyruvate are reported in Ref. [13],
and experimental results in Ref. [14] report the quantitative relationship between
oxygen uptake rate and acetate production rate as a function of succinate uptake rate.

In all cases, FBA-MBRreproduceswell experimental data points in the lowcarbon
source uptake region [14],whereE. coli is indeedoptimizing biomass yield.However,
oxygen uptake rate saturates after some critical threshold of carbon source uptake
rate (which depends on the carbon source) reaching a plateau which, among other
possibilities, could be explained by the existence of a physiological enzymatic limit
in oxygen uptake that lessens the capacity of the respiratory system [15]. The plateau
levels are 18.8±0.7mmol gDW−1 h−1 for glucose [14], 16.8±0.4mmol gDW−1 h−1

for pyruvate [13], and 19.49±0.78mmol gDW−1 h−1 for succinate [14]. In this region
of high carbon source uptake, FBA-MBR predicts an oxygen uptake overestimated
by around 25% with respect to the values reported from experiments. While this
amount is in principle large, the FFP space gives a standard that helps to calibrate it.

The eccentricity of experimental observations is measured as their distance to the
FFP mean. For glucose, this value is 19.4 mmol gDW−1 h−1, which makes the dis-
tance of 5.3 mmol gDW−1 h−1 between the FBA-MBR prediction and experimental
data relatively low (see Fig. 6.4a). The distance of 8.2 mmol gDW−1 h−1 between the
FBA-MBR prediction and experimental data is slightly worse for pyruvate (see Fig.
6.4b), in which case the eccentricity of experimental observations is of 18.4 mmol
gDW−1 h−1. The disagreement between optimality predictions and experimental
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Fig. 6.4 Comparison of predicted phenotypes and experimental data. Sampled points in the FFP
spacewithmaximumcarbon source upper bound are plotted in shaded grey, darkness is proportional
to the number of points. Experimental data points are red circles. The in silico-defined line of
optimality, representing FBA optimal growth solutions as a function of the upper bound uptake rate
of the carbon source, is shown in orange. Blue squares correspond to FFP mean values for different
carbon source upper bound uptake rates. a Oxygen versus glucose uptake rates, experimental data
from [1]. The FFP space is sampledwith glucose bounded to 12mmol gDW−1 h−1.bOxygen versus
pyruvate uptake rates, experimental data from Ref. [13]. The FFP space is sampled with pyruvate
bounded to 23 mmol gDW−1 h−1. c Oxygen versusu succinate uptake rates, experimental data
from Ref. [14]. The FFP space is sampled with succinate bounded to 15 mmol gDW−1 h−1. Inset
Acetate production rate versus succinate uptake rate, experimental data from Ref. [14]. Extracted
from Ref. [8] (color figure online)
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data is much more significative in the case of succinate (see Fig. 6.4c), for which the
eccentricity of experimental observations is only of 4.3 mmol gDW−1 h−1, while the
distance between the FBA-MBR prediction and experimental data is of 5.4 mmol
gDW−1 h−1, meaning that the FFP mean is indeed more adjusted to observations.
The case of acetate production for this carbon source is even more conspicuous
(see Fig. 6.4c Inset). While FBA-MBR is still reproducing well the experimental
results of no acetate production in the low succinate uptake region, it cannot predict
production of acetate at any succinate uptake rate due to the fact that FBA-MBR in
minimal mediumwith unlimited oxygen does not capture the enzymatic oxygen lim-
itation. The FBA-MBR solution diverts resources to the production of ATP entirely
through the Oxidative Phosphorylation pathway. Thus, it fails to reproduce experi-
mental observations of acetate production in the region of high succinate uptake rates
[14, 16–18]. In contrast, most metabolic states in the FFP space are consistent with
acetate production, so that in this case the FFP mean turns out as a good predictor of
the experimentally observed metabolic behaviour.

In summary, while FBA-MBR predictions seem accurate for low carbon source
uptake rate states inminimalmedium as seen previously [14], the experimental points
diverge from the FBA-MBR prediction state when increased values of carbon source
uptake rates are considered. Note that, in general, it is not straightforward to quantify
the significance of the divergence. Here, the FFP space is proposed as a benchmark.
According to this calibration, one finds that FBA optimal growth predictions of
oxygen needs versus glucose, pyruvate, or succinate uptake are worse the more
downstream the position of the carbon source into catalytic metabolism. Using the
coreE. colimodel, it has been checked that the ratio of themaximumATP production
rate to the maximum oxygen uptake (both calculated by FBA optimization of ATP
production rate) for the three carbon sources glucose, pyruvate, and succinate are
respectively 2.9, 2.6, and 2.4, so this ratio decreases as more downstream in the
catalytic metabolism.

6.3 The High-Biomass Production Region of the FFP Space
Displays Aerobic Fermentation in Minimal Medium
with Unlimited Oxygen Uptake

The high-growth metabolic region of the core E. coli FFP space is resampled in
glucose minimal medium with a glucose upper bound of 10 mmol gDW−1 h−1.
This region is defined by setting a minimal threshold for the biomass production of
≥ 0.4 mmol gDW−1 h−1 [19], and the new sample has a final size of 105 states. Note
that phenotypes in this high-growth sample remain very close to the biomass yield
threshold due to the exponential decrease of the number of feasible flux states with
increased biomass production, as shown in the biomass flux profile in Fig. 6.1.
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Fig. 6.5 Schematic of pathway utilization in high-growth versus low-growth conditions. Extracted
from Ref. [8]

In this region, one can identify pathway utilization typical of proliferative micro-
bial metabolism, even when considering a minimal medium and unlimited oxygen
uptake. This metabolic behaviour is consistent with experimental data [1, 14, 20] but
it is unreachable by FBAmodels based on optimality principles (unless optimization
is accompanied by auxiliary constraints not assumed in standard FBA implemen-
tations, like the solvent capacity constraint [19], or by modeling beyond stoichio-
metric mass balance, for instance, thermodynamically feasible kinetics or enzyme
synthesis [21, 22]). These by-products cannot be explained by FBA-MBR in min-
imal medium with unlimited oxygen supply since, in this optimization framework,
metabolic fluxes are basically forced to ATP production through Oxidative Phospho-
rylation with excretion of CO2 as waste. However, increasing the oxygen limitation
in FBA-MBR results in secretion of formate, acetate, and ethanol -in that order-,
with corresponding shifts in metabolic behaviour [15].

According to the FFP space of core E. coli, one can observe that the high-biomass
production FFP subsample is characterized by the secretion of small organic mole-
cules, even when the supply of oxygen is unlimited. This fact points to the simultane-
ous utilization of Glycolysis and Oxidative Phosphorylation to produce biomass and
energy, as illustrated in the schematic shown in Fig. 6.5. Quantitative relationships
between the production of small organic molecules and glucose and oxygen uptake
rates are shown in the remaining panels of Fig. 6.6. Three-dimensional scatter plots
for the production rates of formate, acetate, ethanol, and lactate are shown inFig. 6.6a,
c, e, g respectively, with projections into the three possible two-dimensional planes
shown in Fig. 6.6b, d, f, h respectively. As the levels of glucose and oxygen uptakes
are raised, metabolic phenotypes can achieve an increased production of formate,
acetate, ethanol, and lactate even though the majority of feasible phenotypes remain
at low production values. Due to the high-growth requirement, oxygen uptake is
always high but its variability increases with glucose uptake increase around a value
of approximately 41.2mmol gDW−1 h−1, which clusters themajority of high-growth
metabolic phenotypes. Interestingly, this oxygen uptake rate value marks a region in
the FFP space with maximum potential production rates of formate, acetate, ethanol,
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Fig. 6.6 High growth phenotypes of core E. coli on glucose minimal medium. a 3-Dimensional
scatter plot of formate production rate versus glucose and oxygen uptake rates.bDensity projections
of a on each of the possible 2D planes, formate-glucose, formate-oxygen, and glucose-oxygen.
c 3-Dimensional scatter plot of acetate production rate versus glucose and oxygen uptake rates.
d Density projections of c on each of the possible 2D planes, acetate-glucose, acetate-oxygen,
and glucose-oxygen. e 3-dimensional scatter plot of ethanol production rate versus glucose and
oxygen uptake rates. f Density projections of e on each of the possible 2D planes, ethanol-glucose,
ethanol-oxygen, and glucose-oxygen. f 3-Dimensional scatter plot of lactate production rate versus
glucose and oxygen uptake rates. g Density projections of f on each of the possible 2D planes,
lactate-glucose, lactate-oxygen, and glucose-oxygen. Extracted from Ref. [8]
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and lactate. Above and below that value most states are concentrated in the range
[39.0, 42.0] mmol gDW−1 h−1.

Taken together, these results indicate that, contrarily to standard FBA predic-
tions, a high level of glucose uptake combined with enough oxygen can maintain
the requirements of proliferative metabolism for biomass formation through aerobic
fermentation even if the rest of nutrients are scarce and restricted to the minimum. At
the same time, additional oxygen uptake diverts glucose back towards more efficient
ATP production through Oxidative Phosphorylation. Hence, oxygen has the poten-
tial of regulating the glucose metabolic switch in which glucose uptake rates larger
than a critical threshold around 5.0 mmol gDW−1 h−1 [19] lead to a linearly increas-
ing maximum organic by-products production by a gradual activation of aerobic
fermentation and a slight decrease of Oxidative Phosphorylation.

6.4 Conclusions

The information content of the full FFP space ofmetabolic states in a certain environ-
ment provides with an entire map to explore and evaluate metabolic behaviour and
capabilities. While optimality goals need to be tailored to conditions and produce
singular optimal solutions that may not be consistent with experimental observa-
tions, we have nowadays sufficient computational and methodological capacity to
produce and analyse full FFP maps. The latter offer a reference framework to put
into perspective the likelihood of particular phenotypic states that, as shown, enables
to uncover metabolic behaviours that are unreachable using standard models based
on optimality principles. In fact, the location of metabolic flux distributions into pre-
cise optimal states has been challenged recently by the proposal that metabolic flux
evolve under the trade-off between two forces, optimality under one given condition
and minimal adjustment between conditions [7]. In this way, resilience to changing
environments necessarily forces flux states to near-optimal but suboptimal regions
of feasible flux states in order to maintain adaptability.

In the FFP map of core E. coli in aerobic minimal medium, optimal growth states
appear as eccentric and far from the bulk of more probable phenotypes represented
by the FFP mean, which offers an ergodic perspective of the FFP space in which all
states can be explored at randomwith equal probability. One of the uses of themethod
is precisely to evidence the effects of evolutionary pressure on organisms, whichmay
actually result in eccentric flux states. On the other hand, the FFP space gives a stan-
dard to calibrate the deviation of optimal phenotypes fromexperimental observations.
Oxygen consumption is a particularly interesting target for analysis since it has been
identified as a trigger of metabolic shifts [15, 23]. Interestingly, according to the FFP
map as a reference standard, it is found that, in high-growth conditions, FBA-MBR
predictions of experimental observations for unlimited oxygen needs versus glucose,
pyruvate, or succinate uptakes are worse the more downstream the uptake of the car-
bon source into the catalytic metabolic stream. This is consistent with the fact that
the FBA-MBR solution diverts resources to the production of ATP entirely through
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the Oxidative Phosphorylation pathway, so that the more is the effective potential of
the carbon source to recombine with oxygen to produce energy the more convergent
will be the in silico prediction and the observed states.

In order to correct FBA in high-growth conditions, some investigations restricted
the solution space beyond mass balance and uptake bounds through additional ther-
modynamic, kinetic or physiological constraints, like the solvent capacity constraint
quantifying the maximum amount of macromolecules that can occupy the intracel-
lular space [19]. Alternatively, the objective function implemented in FBA has been
modified to non-linear maximization of the ATP or biomass yield per flux unit [6],
or modelling beyond stoichiometric mass balance, like thermodynamically feasi-
ble kinetics or enzyme synthesis, has been considered [21, 22]. While these FBA
modifications enhance some predictions, their effectiveness depends on the estima-
tion of kinetic coefficients using empirical or experimental data. In contrast, the
FFP map naturally displays all high-growth feasible states which show character-
istic metabolic behaviours, like aerobic fermentation with unlimited oxygen uptake
even in minimal medium, without the need to determine additional constants. This
aerobic fermentation, apparently inefficient in terms of energy yield as compared to
Oxidative Phosphorylation, has been demonstrated to be a favourable catabolic state
for all rapidly proliferating cells with high glucose uptake capacity [19], and from
this analysis it turns out as a probable metabolic phenotype even in minimal medium.

Beyond theoretical implications, FFP maps of microbial organisms can be of
particular interest as tools for biotechnological applications, for instance in the engi-
neering of E. coli fermentative metabolism as a fundamental cellular capacity for
valuable industrial biocatalysis [24]. In biomedicine, the investigation of FBA opti-
mal phenotypes in the framework of the FFP map can help to contextualize disease
phenotypes in comparison to normal states. For instance, FBA proved suitable for
modelling complex diseases like cancer as it assumes that cancer cells maximize
growth searching for metabolic flux distributions that produce essential biomass
precursors at high rates [25, 26]. The analysis of the entire region of high-growth
phenotypes will allow to reach and study a variety of suboptimal feasible flux states
close to optimality but which cannot be reproduced by optimality principles, and so
it opens new avenues for the understanding of general and fundamental mechanisms
that characterize this disease across subtypes.

6.5 Summary

• FFP maps offer a reference framework to put into perspective the likelihood of
particular phenotypic states. It enables to uncover metabolic behaviours that are
unreachable using standard models based on optimality principles [8].

• Optimal FBA growth states are eccentric and appear far from the bulk of more
probable phenotypes represented by the FFP mean [8].

• The FFP space gives a standard to calibrate the deviation of extreme phenotypes
from experimental observations [8].
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• The FFP map naturally displays all high-growth feasible states which show char-
acteristic metabolic behaviours like aerobic fermentation with unlimited oxygen
uptake even in minimal mediumwithout the need to force additional constants [8].
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Chapter 7
Conclusions

This thesis presents a study of cell metabolism from a systems-level approach trying
to unveil new mechanisms and responses impossible to reach by traditional reduc-
tionist procedures. Different methods and analysis techniques have been used, and
each one has allowed to extract new insights about the properties of cell metabolism.
Tools that belong to the complex network science and Systems Biology have been
used. On what follows, the conclusions of this thesis are given, answering to the
objectives stated in Chapter 1.

The thesis starts by considering the study of the topology, i.e., the connectivity
pattern, ofmetabolic networks. From this point of view, it is possible to checkwhether
the structure of metabolic networks has evolved towards increasing its robustness
against external perturbations. It is important to notice that, at this stage, reaction
fluxes are not considered.

From the obtained results of the first chapter of this thesis, one can conclude that
the structure of the metabolic networks of Escherichia coli, Staphylococcus aureus,
andMycoplasma pneumoniae has evolved towards robustness against individual and
multiple reaction failures, which produce a reduced damaged compared to failures
in degree-preserving randomized counterparts. M. pneumoniae is an exception in
relation to individual reaction failures. This feature can be explained in terms of
its simpler structure. Moreover, it is found that failures provoked by pairs of reac-
tions generate an amplification effect which arises due to the non-linear interactions
between the two damaging cascades propagating in the networks. In addition, a
predictor of damage propagation for single cascades computed locally accounts for
damage spreading. Also at the local level, a series of structural motifs can explain
amplified failure patterns in double reaction cascades.

When the study is extended to gene failures, one finds that the method to com-
pute cascades capturesmost of the scenarios of experimentally determined lethality in
M.pneumoniae. Furthermore,when referring tomultiple failures, the proposed analy-
sis allows to find that (1) for failure cascade spreading, the distribution of cluster sizes
is more important than the actual composition of the clusters, and (2) the regulation
of high-damage genes tends to appear isolated from that of other genes, a kind of
functional switch in metabolic networks that at the same time acts as a kind of
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genetic firewall. In any case, it is important to notice that a cascade may not only be
interpreted as the harmful spreading of failures, but also as the ability to efficiently
regulate metabolism. Large cascades may point at the evolutionary requirement of
regulating large parts of metabolism through the regulation of small sets of enzyme-
coding genes. Therefore, evolutionary pressure seems to favour the ability of efficient
metabolic regulation at the expense of robustness to reaction knockouts.

This study can be complemented taking into account the fluxes flowing through
the biochemical reactions with the aim to describe more appropriately real features
of metabolic operation. These investigations permit to know how reactions adapt to
different situations, extending for instance the previous study of gene knockouts, or
additionally, looking at responses to changes of the composition of the external envi-
ronment. Flux Balance Analysis is used to compute fluxes of biochemical reactions.
This method is based on different suppositions, principally that (1) metabolic net-
works work at steady state and that (2) the biological target of organisms is to grow
as much as possible. In this way, FBA can be used to go beyond the mere analysis of
the structure of metabolic networks and to identify metabolic fluxes that cannot be
resolved using only a topological analysis. When FBA is applied to single reaction
knockouts in E. coli, the main conclusion is that there exists a set of reactions which
must be always active in order to ensure viability. However, non-essential reactions
deserve special attention, either considering their role as growth enhancers or their
potential participation in synthetic lethal pairs.

The study of synthetic lethal pairs allows to understand new protection mech-
anisms that metabolism has developed to survive. Synthetic lethal reaction pairs
can be classified into two classes, plastic and redundant, depending on whether
one reaction is active for maximum growth in the medium under consideration and
the second inactive (plasticity) or, conversely, both reactions have simultaneously
non-zero fluxes (redundancy). This particular study is made in both E. coli and
M. pneumoniae. On the one hand, plasticity is a sophisticated mechanism that is able
to reorganize metabolic fluxes turning on inactive reactions when coessential coun-
terparts are removed so as to maintain viability, working as a backup mechanism. On
the other hand, redundancy corresponds to a simultaneous use of different flux chan-
nels, ensuring in this way viability and increasing the growth rate of the organism.
Furthermore, plasticity requires a higher degree of functional organization, using at
the same time less resources for maximum growth. It takes place more often in E.
coli than inM. pneumoniae.

The previous study is completed by analysing how plasticity and redundancy
depend on the external environment for E. coli. One finds that plasticity and redun-
dancy are conserved independently of the composition of the medium which acts
as environmental condition for growth. Moreover, this conservation takes place also
when this environment is enriched with non-essential compounds or overconstrained
to decrease the maximum growth rate.

One can further exploit FBA, assuming conditions of growth optimality, in order
to assess evolution or adaptation characteristics of metabolic networks. A filtering
method called disparity filter allows to reduce the density of links of metabolic
networks while preserving their main features. The metabolic networks of E. coli
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and M. pneumoniae are filtered to extract their backbones. First of all, it is checked
that the disparity filter is, indeed, very efficient in order to decrease the link density
of the studied metabolic networks using FBA fluxes as the weights of the links.

The analysis of the connected components of the metabolic backbones of both
E. coli and M. pneumoniae in a glucose minimal medium allows to identify that
these components mainly contain reactions that belong to ancient pathways, i.e.,
pathways showing long-term evolution. Moreover, for both organisms, the presence
of pathways related to energy metabolism -like Glycolysis, Citric Acid Cycle, and
Oxidative Phosphorylation for E. coli, or Glycolysis and Pyruvate Metabolism for
M. pneumoniae- could mean that these pathways have an important role in maximiz-
ing the growth and have evolved towards maximum efficiency to obtain chemical
energy, something very important in case of nutrient scarcity and hence energy defi-
ciency.

In addition, the study of the dependence of E. coli backbones on different envi-
ronments allows to identify environment specific pathways displaying short-term
adaptation. First, the analysis of the metabolic backbone obtained in a rich medium
allows to demonstrate that the nutritionally-rich medium induces a large increase in
the growth rate of E. coli due to nutrient abundance. The instantaneous response of
E. coli to environment is to synthesize as much as membrane lipids as possible, since
fast-growing cells must synthesize membrane components more rapidly to satisfy
the high lipid demand to generate new cells. Second, with the study of the different
backbones obtained from different minimal media, one finds that the distribution of
the fluxes is little dependent on the nutrients present in the environment. In addition,
it is also possible to extract that the pathway Alternate Carbon Metabolism is, for
E. coli, the pathway with more capabilities to respond to external stimuli.

It is worth remarking that FBA makes the supposition that the biological target of
organisms is to grow as much as possible. This may be plausible in some situations
but there exist other in which the biological target of an organism is not to maximize
growth. Hence, a study of the entire space of possible flux solutions can help to assess
whether the FBA solution is representative of the whole space or not. The whole
space encompassing the entire set of flux solutions, referred to as the full feasible
flux phenotypes (FFP) space, is computed forE. coli. The information contents of the
FFP space of metabolic states in a certain environment provides with an entire map
to explore and evaluate metabolic behaviour and capabilities. In fact, FFP maps can
answer the question of whether FBA gives a representative solution of the flux space.
The main conclusion is that optimal growth states obtained via FBA computations
appear as eccentric and far from the bulk of more probable phenotypes.

In addition to the eccentricity of the FBA solution, the FFP space also gives a stan-
dard to calibrate the deviation of phenotypes obtained using FBA from experimental
observations. Thus, it serves to compare FBA predictions with experimental results.
For instance, the analysis of oxygen needs versus glucose, pyruvate, or succinate
uptakes show that FBA results are worse the more downstream the uptake of the
carbon source into the catalytic metabolic stream. This is explained due to the fact
that the FBA solution diverts resources to the production of ATP entirely through
Oxidative Phosphorylation. In this way, the more the effective potential of the carbon
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source to recombine with oxygen to produce energy using Oxidative Phosphoryla-
tion, the more convergent will be the FBA prediction with respect to experimental
results.

On the other hand, the FFP space naturally displays all high-growth feasible
states which show characteristic metabolic behaviours, like aerobic fermentation
with unlimited oxygen uptake even in minimal medium. This is an important feature,
since these metabolic behaviours cannot be obtained under FBA maximum growth
computations without using additional constraints. This reinforces the idea that the
FFP map contains valuable information about metabolic states.

It is important to point out that the used methodology in this thesis is not restricted
to bacteria, and that it could also be applied to metabolic networks of other species.
In particular, the results of the study of structural stress may have potential implica-
tions in areas like metabolic engineering or disease treatment. The study of complex
systems under structural stress poses a number of formidable challenges critical to
understand their behaviour as well as towards proposing successful strategies for
prediction and control. In this framework, the study of structural stress in human
pathogens may help to develop more sophisticated forms of identifying new and
more efficient drug targets.

Plasticity and redundancy are very important concepts for biological complex
systems in general. Whether they are adaptive in cell metabolism or, as it has been
argued for metabolism in changing environments [1, 2], they are rather a by-product
of the evolution of biological networks toward survival, these regulatory mecha-
nisms are key to understand how complex biological systems protect themselves
against malfunction. Among the many different applications of synthetic lethality,
one of them is to determine the accuracy of gene essentiality of new genome-scale
reconstructions of metabolic networks [3].

Since the application of the disparity filter in metabolic networks can be used
to recognize pathways and reactions which (1) are more sensitive to environmental
changes, and (2) which are involved in the maximization of the growth rate of an
organism due to evolutionary pressure, its use could be appropriate in the field of
biotechnology. For example, it could be useful for the targeting of the most important
pathways present in cancer cells which are in charge of their high growth rate.
Therefore, this could help to understand the biochemical mechanisms that cancer
cells use to proliferate. In this way, it will be possible to find a way to decrease the
high performance achieved by cancer cells in terms of growth efficiency.

Finally, FFP maps of microbial organisms can be of particular interest as tools for
biotechnological applications, for instance in the engineering of E. coli fermentative
metabolism as a fundamental cellular capacity for valuable industrial biocatalysis [4].
In biomedicine, the investigation of FBA phenotypes in the framework of the FFP
map can help to contextualize disease phenotypes in comparison to normal states.
For instance, FBA proved suitable for modelling complex diseases like cancer as it
assumes that cancer cells maximize growth searching for metabolic flux distributions
that produce essential biomass precursors at high rates [5, 6]. The analysis of the
entire region of high-growth phenotypes will allow to reach and study a variety of
suboptimal feasible flux states close to optimality but which cannot be reproduced by
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optimality principles, and so it opens new avenues for the understanding of general
and fundamental mechanisms that characterize this disease across subtypes.
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Appendix A
Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov test [1] is a test used in statistics which compares the
probability distribution obtained from a sample with a reference probability (one-
sample K-S test), or which compares two samples (two sample K-S test). It basically
quantifies a distance between the cumulative distribution function of the sample and
the cumulative distribution function of the reference distribution, or between the
cumulative distribution functions of two samples. The null hypothesis of this test
assumes that the samples are obtained from the same distribution (two sample K-S
test) or that the sample is drawn from the reference distribution (one sample K-S
test). The two-sample KS test is one of the most useful methods for comparing two
samples, which is the variant that has been used in this thesis.

To compare two samples, first of all one has to compute the maximum distance
K − S between the two cumulative distribution functions

K − S = max |F1,n(x) − F2,n′(x)| (A.1)

where F1,n(x) and F2,n′(x) are the cumulative distribution functions of the first and
second sample, and n and n′ are the sizes of each sample respectively (see Fig.A.1).
To compute the associated significance of the value of K − S, one has to calculate
the p-value applying the following expression:

p = 2
∞∑

j=1

(−1) j−1 exp(−2 j l2) (A.2)

where l = K−S·(√N+0.12+ 0.11√
N

), and N = n n′
n+n′ . Then, one compares this p-value

with the chosen reference, usually α = 0.05. If p < α, one can consider that both
distributions are drawn from the same distribution, otherwise they are considered
significantly different.
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Fig. A.1 Visualization of
the value K − S used in the
K-S test computed using two
Log-normal distributions [2]
with different means and the
same standard deviation.
After computing the
maximum difference, this
value is transformed into a
p-value
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Appendix B
Spearman’s Rank Correlation Coefficient

The Spearman’s rank correlation coefficient [1], often denoted by the Greek letter ρ,
is a nonparametric measure used in statistics which measures statistical dependence
between two variables. It assesses how well the relationship between two variables
can be described using a monotonic function. Spearman’s coefficient can be used
both for continuous and discrete variables, including ordinal variables.

TheSpearman’s coefficient is basically thePearson correlation coefficient between
the ranked variables. The ranks of both samples are compared and the value of ρS is
computed with the following expression:

ρS =
∑

i (xi − x̄)(yi − ȳ)√∑
i (xi − x̄)2(yi − ȳ)2

(B.1)

where xi and yi are the ranks of the values of the sample Xi and Yi .
To assess the significance of the measure, a permutation test is done in this thesis,

where the values of Xi and Yi are reshuffled and then, for each realization, ρS is
calculated.After doing this for all realizations, one keeps themaximumandminimum
value of the obtained ρS , which gives the interval that belongs to the nullmodel. Thus,
if the value of ρS of the original sample lies within this interval, it implies that there
is no correlation between the ranks of both samples. Otherwise, if the value of ρS of
the original sample lies outside the range of the null model, one can consider that
there exists a correlation between both samples.
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Appendix C
Point-Biserial Correlation Coefficient

The point biserial correlation coefficient (rpb) [1] is a correlation coefficient which is
usedwhen one variable is continuous and the other is dichotomous. This dichotomous
variable can either be a truly dichotomous variable, like male/female, or an artifi-
cially dichotomized variable, obtained by using a threshold on a continuous variable.
However, in most situations it is not advisable to dichotomize variables artificially
and thus it is more appropriate to use specific statistical tests for continuous variables.

The point-biserial correlation is equivalent to the Pearson correlation. To cal-
culate the point-biserial correlation coefficient, one assumes that the dichotomous
variable can have the values 0 and 1. Therefore, one can divide the data between two
groups, the first group which corresponds to the value 1 on the dichotomous variable,
and the second group which corresponds the value 0 on the dichotomous variable.
Thus, the point-biserial correlation coefficient is calculated as follows:

rpb = M1 − M0

sn

√
n1n0
n2

(C.1)

where M1 is the mean value of the continuous variable for all data points in the first
group, and M0 is the mean value of the continuous variable for all data points in
the second group. Further, n1 is the number of data points in the first group, n0 is the
number of data points in the second group, and n is the total sample size. sn is the
standard deviation computed as follows:

sn =
√√√√1

n

n∑

i=1

(xi − ν)2 (C.2)

where xi is continuous variable and ν is its average value. It is possible to compute
a t-value (associated to a Student’s t-distribution) from this correlation coefficient:
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t = rpb

√
n1 + n0 − 2

1 − r2pb
(C.3)

where rpb is the the point-biserial correlation coefficient. From this value of t , a
p-value of the significance can be obtained by computing the area of the Student’s
t-test from −∞ to the computed value of t with (n1 + n0 − 2) degrees of freedom.
If the p-value is lower than a chosen critical value of the significance (usually 0.05),
one can consider that there is a significant correlation between the continuous and the
dichotomous variable. Otherwise, one must conclude that there is not a significant
correlation between both variables.
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Appendix D
Disparity Filter

The disparity filter [1] takes advantage of the local fluctuations present in the weights
of the links between nodes. It is useful to define the strength si of a node i as the sum
of the weights (νi j ) of the links associated to this node, si = ∑

j νi j . The filtering
method starts by normalizing the weight of the nodes pi j = νi j

si
, where νi j is the

weight of a link j of the node i , since one needs a measure of the fluctuations of the
weights attached to a node at the local level. The key point is that a few links have
a large value of pi j being thus more significant than the others, as computed by the
disparity measure defined as ϒi (k) ≡ k

∑
j p

2
i j , where k is the degree of the node

and pi j is the normalized weight of the link between node i and node j .
In the application of this method to metabolic networks, ϒi (k) characterizes the

level of local heterogeneity of a metabolite i , and so pi j stands for the normalized
weight of the link between metabolite i and reaction j , with νi j the flux of reaction j .
Under perfect homogeneity, when all the links share the same amount of the strength
of the node, ϒi (k) equals 1 independently of k, whereas for perfect heterogeneity,
when one of the links carries the whole strength of the node,ϒi (k) equals k. Usually,
an intermediate behavior is observed in real systems.

To assess the deviations of the weights of the links, a null model is used which
provides the expectation of the disparitymeasure of a node in a random case. The null
hypothesis consists on the fact that the normalizedweights that correspond to a certain
node are produced by a random assignment coming from a uniform distribution.
Notice that, since in this chapter directed metabolic networks are used, one has three
kinds of links. Bidirectional links are decoupled into incoming and outgoing links,
leading to a network where nodes have incoming and outgoing links. Each kind of
links are treated independently, each one having its own probability density function.
The filter then proceeds by identifying which links must be preserved. To do this,
one computes the probability αi j that a weight pi j is non-compatible with the null
model. This probability is compared to a significance level α, and thus links that
carry weights with a probability αi j < α can be considered non-consistent with the
null model and they are considered significant for the metabolite. The probability
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αi j is computed with the expression α
in/out
i j = (1 − pin/out

i j )k
in/out−1. Note that, for

nodes with only one incoming or outgoing connection, one uses the prescription to
preserve those links.
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Appendix E
Hit-And-Run Algorithm

The feasible flux phenotypes (FFP) space of different metabolic models in specific
environments has been explored using different sampling techniques [1–4]. Here, the
Hit-And-Run (HR) algorithm is used, tailoring it to enhance its sampling rate and to
minimize its mixing time [4]. On what follows, the key points and ideas behind the
HR algorithm are stated.

One must start by noticing that all points in the FFP space must simultaneously
satisfymass balance conditions and uptake limits for internal and exchangedmetabo-
lites. The former requirement defines a set of homogeneous linear equalities, whose
solution space is K , while the latter defines a set of linear inequalities, whose solu-
tions lie in a convex compact set V . From a geometrical point of view, the FFP space
is thus given by the intersection S = K ∩ V . A key step of the HR approach used
here consists on realizing that one can directly work in S by sampling V in terms of
a basis spanning K . This allows to retrieve all FFPs that satisfy mass balance in the
medium conditions under consideration, without rejection. Additionally, sampling in
S allows to perform a drastic dimensional reduction and to decrease considerably the
computation time. Indeed, assuming to have N reactions, I internal metabolites, and
E exchanged metabolites (N > I + E), one has that S ⊂ R

N−I , which is typically
a space with greatly reduced dimensionality with respect to V ⊂ R

N .
Once a basis for K is found, the main idea behind HR is fairly simple. Given a

feasible solution νo ∈ S, a new, different feasible solution νn ∈ S can be obtained
as follows:

1. Choose a random direction u in RI

2. Draw a line � through νo along direction u:

� : νo + λu, λ ∈ R

3. Compute the two intersection points of � with the boundary of S, parametrized
by λ = λ−,λ+:
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νo

νn

u

ν+

ν−

Fig. E.1 Illustrative representation of the HR fundamental step, which generates a new feasible
state νn νn from a given one νo. Extracted from Reference [6]

ν− = νo + (λ−)u

ν+ = νo + (λ+)u

4. Choose a new point νn from �, uniformly at random between ν− and ν+. In
practice, this implies choosing a value λn in the range (λ−,λ+) uniformly at
random, and then

νn ≡ νo + λnu

This procedure is repeated iteratively so that, given an initial condition, the algorithm
can produce an arbitrary number of feasible solutions (see Fig.E.1 for an illustrative
representation of the algorithm). The initial condition, which must be a feasible
metabolic flux state itself (i.e., it must belong to S), is obtained by other methods. In
this work, the algorithm called MinOver is used, see References [4, 5], but any other
technique is valid. In particular, in cases where small samples of the FFP space have
been already obtained by other sampling techniques, such points can be used to feed
the HR algorithm and produce a new, larger sample.

It was proven [7] that, by iterating steps (1–4), the samples obtained are asymp-
totically unbiased, in the sense that the whole FFP space is explored with the same
likelihood in the limit of very large samples. In practice, one must always work with
a finite sample, and hence the following additional measures are taken so as to ensure
that the used samples were truly representative of the whole FFP space. In particular:

1. Only one every 103 points generated by HR is included in the final sample. This
effectively decreases the “mixing time” of the algorithm, since the correlation
among the points that are actually retained decays fast.

2. Different initial conditions are used. Results show no dependence on the initial
condition, as expected for large samples. Even so, the first 30% of points are
discarded, in order to rule out any subtler effect of the initial condition on the
final results.
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3. Results are recalculated using subsamples of size 10% of the original sample.
Qualitative differences between the two sets are not found.

Since the HR algorithm is very efficient itself and due to the dimensionality
reduction that this implementation adds, very large samples can be generated in
reasonable time. For each model, samples of size 109 are initially created, giving
rise to a final set of 106 feasible solutions uniformly distributed along the whole FFP
space.
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Appendix F
Principal Component Analysis

The computation of reaction pairs correlations may be exploited to detect how global
flux variability emerges in the system through Principal Component Analysis (PCA)
[1, 2] and to quantify, in turn, the closeness of optimal phenotypes to the bulk of the
feasible flux phenotypes (FFP) space. On what follows, PCA is briefly described,
while an illustrative example is also provided (see Fig.F.1).

One starts by writing down the matrix Ci j of correlations between all reaction
pairs i, j . In doing this, one measures how much the variability of a reaction flux νi
affects the flux ν j (and viceversa). In mathematical terms, for each pair of reactions
i, j , one has:

Ci j = 〈νiν j 〉 − 〈νi 〉〈ν j 〉√(〈ν2
i 〉 − 〈νi 〉2

) (
〈ν2

j 〉 − 〈ν j 〉2
) , (F.1)

where 〈. . .〉 denotes an average over the sampled set and the denominator of the
fraction is simply the product of the standard deviations of νi and ν j . This matrix is
shown in Fig. 6.4e in Chap.6.

MatrixC is real and symmetric by definition and, thus, diagonalizable. Thismeans
that, for every eigenvector ρκ, one has Cρκ = λκρκ. Note that matrix C describes
paired flux fluctuations in a reference frame centered on the mean flux vector. The
eigenvectors ρκ of C express, in turn, the directions alongwhich such fluctuations are
taking place. In particular, the eigenvectors ρ1, ρ2 associated with the first two largest
(in modulo) eigenvalues dictate the two directions in space where the sampled FFP
displays the greatest variability (see Fig.F.1). This implies that sampled phenotypes
lie closer to the plane spanned by ρ1 and ρ2 than the ones produced by any other linear
combination of C eigenvectors. Projecting all sampled FFP onto this plane allows
thus to perform a drastic dimensional reduction yet retaining much of the original
variability and allows to have a direct graphical insight on where phenotypes lie,
on where the bulk of the FFP is located, and on how the Flux Balance Analysis
(FBA) solution compares to them. In such plot, each phenotype j is described by
two coordinates that may be parametrized via a radius rj and an angle θj . Since the
projection is normalized, it follows that rj ≤ 1. Furthermore, the closer rj to one, the
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Fig. F.1 An example to describe PCA analysis. a FFP sampling produces a cloud of points in a
multidimensional space that, when projected along the (x, z), (y, z) and (x, y) planes, is seen to
span a wide range of values. Finding the eigenvectors of the correlation matrix, one can see that
such points are actually clustered around a plane (plotted as a yellow grid). By diagonalizing the
(3× 3) correlation matrix, one finds the three vectors (plotted in blue, red and green, respectively)
identifying the direction in space where the points show most variation, in a decreasing manner. A
black square is also plotted as a reference eccentric point. b By projecting the sampled FFP along
vectors ρ1, ρ2, and ρ3, all points are squeezed in a thin region close to the (ρ1, ρ2) plane. This
shows that the greatest variability of the sampled points actually occurs in the ρ1, ρ2 directions. In
this representation, the eccentric black square point is seen to lie far from the plane with a large
ρ3 coordinate. c Normalizing the projection in (b) over the modulus of the vector identifying the
point coordinate allows to quantify the closeness to the (ρ1, ρ2) plane. In such way all points are
projected over the unit radius sphere, with the majority of points scattered near the equator, i.e., the
(ρ1, ρ2) plane. Therefore, in this representation, eccentric points like the black square are close to
the pole. d Points on the unit sphere may in turn be projected on the (ρ1, ρ2) plane only. In this way
all points are constrained within the unitary radius circle, with points close to the equator in plot (c)
now close to the circle and the ones close to the pole in (c) near the origin. In this representation,
typical points, i.e., those originally closer to the yellow plane in (a), have larger radius (close to one,
but smaller than that) and eccentric points have a smaller radius, like the black square. e Plotting
the distribution of the points radius, as in Fig. 6.3, one sees that P(r) has indeed a peak in one, with
very low probability of finding a point with a radius close to zero. Similarly to Fig. 6.3 the radius
of the eccentric point is indicated, highlighting how low r , eccentric points are indeed unlikely. f
Similarly to Fig. 6.2e in Chap.6, the points on the (ρ1, ρ2) plane are re-projected, but with a negative
log radius. Here all points plotted in panel (d) appear with the same angular coordinate they have in
(d) but with a radius r ′ = − log(r). In this way, typical points that in (d) have almost unitary radius
now coalesce towards the origin and atypical points, that in (d) lie close to zero, are now pushed
away from the origin, like the black square. A similar pattern is observed in Fig. 6.2e in Chap.6,
where the majority of points converge towards the origin and FBA is seen to be a rather eccentric
outlier. Extracted from Reference [3] (color figure online)
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better the phenotype j is described by only looking at variability along ρ1, ρ2. As rj is
one at themost and since one has somany phenotypes clustered together, it is possible
to choose to plot the PCA projection by using an effective radius r ′

j = − log rj , as in
Fig. 6.4e. In this way one could better discriminate among different phenotypes and
got a ‘closest to the origin, closest to the ρ1, ρ2–plane’ setup.
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